MOS-AK Workshop (Baltimore 2009)

Recent Achievements in Verilog-A Compact Modeling

Geoffrey Coram and Mengmeng Ding

Outline

BSIMSOI

Silicon-on-insulator (SOI) MOSFET model
 Developed by UC Berkeley

Standardized by Compact Model Council
28,832 lines (*.c, *.h in 4.2 distribution)

Numerous bugs

In parameter handling, source/drain swapping, derivatives

 50 found while converting to Verilog-A of which about half were new (not previously reported by EDA vendors)

bsimsoi.va

Verilog-A definition of BSIMSOI 4.2+ Approx. 7100 lines of code (¼ of C code)

Never any derivative errors

Approx. 1 month to develop from C code

- Perl script to extract and convert
- Much hand-coding
- Assistance from Tiburon to find "superfluous assignments" (derivatives)
- Some compiler improvements
- Includes time addressing bugs in C code
- Still faster than typical C model implementation time

bsimsoi.va

- CMC agreed (Sept. 2009) that next release of BSIMSOI would be in Verilog-A
 - Some CMC models were originally in Verilog-A
 - •This will be the first to change from Spice C

Code sent to Berkeley and EDA vendors for validation

Thanks to Simucad, Ansoft, IBM for feedback

\$port_connected

•BSIMSOI has 3 optional terminals: P, B, T

 Most Spice simulators require all ports of Verilog-A models to be connected

Compiler must interpret \$port_connected(b)
 to mean b is an optional terminal

Collapsible nodes (switch branches)

RGATEMOD allows 0, 1, 2 internal gate nodes

RBODYMOD allows 0 or 2 internal body nodes

•RD/RS can give 2 additional nodes

•\$limit

Spice C code uses node-based limiting:

```
vg = B4SOIlimit(*(ckt->CKTrhsOld + here->B4SOIgNode),
```

```
*(ckt->CKTstate0 + here->B4SOIvg), 3.0,
```

&Chk)

Limiting algorithms typically proprietary

Self-heating parameter update issues Rds < 0 because of linear tempco PRT Vsat < 0 because of linear tempco AT

Validation Challenges

- C code is a moving target
 IBM's "4.2 Production Plus" effort
 - Approx. 30 additional bugfixes beyond 4.2
 - Bug in spice3f5 noise code means reference results are bad

Reference results must be regenerated for latest C code

Validation: 4.2PP versus 4.1

Test	Paramchk=0	Paramchk=1	Why?
dcSweep01	< 0.1%	9%	Rds0<0 at
dcSweep02	< 0.1%	17%	-50℃
dcSweep03	< 0.1%	9%	
acVd01	0.5%	0.5%	
acVd02	0.5%	0.5%	
acFreq01	0.3%	0.3%	
acFreq02	0.5%	0.5%	
noise01	100%	100%	spice3f5
noise02	100%	100%	noise bug
noise03	100%	100%	

10 Coram/Ding: Recent Achievements in Verilog-A Compact Modeling (MOS-AK Baltimore 2009)

Validation: VA versus 4.2PP

Test	Adice	SimA	SimB
dcSweep01	< 0.001%	< 0.1%	< 0.005%
dcSweep01	< 0.001%	< 0.1%	< 0.005%
dcSweep01	< 0.001%	< 0.1%	< 0.005%
acVd01	< 0.001%	< 0.4%	< 0.001%
acVd02	< 0.001%	< 0.4%	< 0.001%
acFreq01	< 0.001%	< 0.03%	< 0.005%
acFreq02	< 0.001%	< 0.02%	< 0.005%
noise01	< 0.001%	~ 1%	13%
noise02	< 0.001%	~ 1%	13%
noise03	< 0.001%	~ 1%	13%

11 Coram/Ding: Recent Achievements in Verilog-A Compact Modeling (MOS-AK Baltimore 2009)

Benchmarking

- Delay chain similar to circuit from Gilles Depeyrot, MOS-AK Athens 2009
- Using models from CMC QA suite
- SimA, SimB are commercial simulators

Circuit	SimA w/ self-heat		SimA w/o SH	
	CPU	Memory	CPU	Memory
400 bsimsoi				
Built-in	78s	39.2MB		
Verilog-A	153s	56.5MB		
Ratio	1.96x	1.44x		
4000 bsimsoi				
Built-in				
Verilog-A				
Ratio				

Circuit	SimA w/ self-heat		SimA w/o SH	
	CPU	Memory	CPU	Memory
400 bsimsoi				
Built-in	78s	39.2MB	46s	38.5MB
Verilog-A	153s	<u>56.5</u> MB	149s	60.7MB
Ratio	1.96x	1.44x	3.24x	1.58x
4000 bsimsoi				
Built-in	539s	74.4MB	541s	74.5MB
Verilog-A	2161s	305MB	2318s	305 MB
Ratio	4.01x	4.10x	4.28x	4.09x

14 Coram/Ding: Recent Achievements in Verilog-A Compact Modeling (MOS-AK Baltimore 2009)

Depeyrot, MOS-AK Athens 2009 Analyzed Verilog-A to SPICE (built-in hand-coded C) in SMASH and "simulator B" Showed 6x to 40x performance hit!

Test circuit provided to ADI and re-run in "simulator A"

Circuit	Depeyrot		SimA
	CPU time		
400 MOS	7.7x		1.6x
4k MOS	6.1x		1.5x
40k MOS	13.8x		1.7x
	Memory		
400 MOS	1.2x		1.08x
4k MOS	1.7x		1.10x
40k MOS	4.1x		1.13x

ADI has its own Verilog-A compiler

- Independently developed, not based on ADMS nor Tiburon
- Generates C code for ADICE
- Creates dependency tree for model initialization, "static" vs "dynamic" load, noise
- Used for several models, including PSP, MOS20, BSIMSOI

Benchmarked against hand-coded C for BSIM3

Circuit	# BSIM3	Transient CPU		Ratio
		С	VA	VA/C
Simple amp	8	26.3s	25.8s	0.98
PLL	412	566s	540s	0.95
Switch-cap comparator	436	2.40ks	2.44ks	1.02
Sigma-delta modulator	1340	506s	505s	1
ADC front-end	1680	359s	378s	1.05
DCO	4281	1.40ks	1.56ks	1.11

CPU penalty of < 2x is commercially available Performance parity is possible MCAST (Prof. CJ Richard Shi) http://www.ee.washington.edu/research/msca d/shi/mcast.html

•Automatic compiler beats hand-coded C

Reported circa 2004

19

No one hand-codes assembly language!

Original guidelines: Coram, BMAS 2004 •avoid analysis() and initial_step etake care with ln(x) abs(x) if() Perraud, MOS-AK Strasbourg 2005 •ADMS limitations: no idt(), V(x) <+ Coram & McAndrew, CMRF 2005 watch out for sqrt(x) near x=0 •watch out for integer division: 1/2 = 0

Mierzwinski, MOS-AK San Fran 2008

Tips based on Modified Nodal Analysis

Suggests using if (R > 0)

```
> 0)
I(br) <+ V(br) / R;</pre>
```

else

V(br) <+ 0;

(so we assume it's supported by TDA!)

 Memory states are almost certainly programming errors in compact models

•Do not use I(br) <+ x * ddt(y);</pre>

(note that ddt(Q) != V * ddt(C))

- Depeyrot, MOS-AK Athens 2009
 - Focus on Spice integration
 - Good points about including P-type equations, operating-point values, noise names
 - However: several guidelines violated by BSIMSOI!

Depeyrot guideline	bsimsoi.va
Limit to the use of electrical discipline	Uses thermal for self- heating
Avoid collapsing two ports, or one port and the ground	Collapses t terminal to ground when RTH=0; May collapse optional terminals b and p
Do not use system tasks except \$mfactor	Uses \$temperature, \$port_connected, \$param_given

- Some restrictions are critical
- Others are current simulator limitations
- If a feature is necessary for a model, then simulator vendors must address the limitation
 - Thermal discipline in Spice netlist
 - •\$port_connected
 - Collapsing multiple internal nodes to one port

Conclusion

Verilog-A is increasing its "market share"

 Writing a good compact model still requires care and rigor

Simulator vendors have work to do

• 1x has been demonstrated

More Information

Verilog-A model library at http://www.designersguide.org/VerilogAMS/ •VBIC, MOS11, JFET, etc. Also, forum for asking questions PSP <u>http://pspmodel.asu.edu</u> Mextramhttp://mextram.ewi.tudelft.nl/ bsimsoi.va available from Berkeley Silvaco/Simucad has models available "for non-commercial use"