
CADENCE CONFIDENTIALCADENCE CONFIDENTIAL

New enhancements
in ADMS and Spectre CMI XML scripts

Sergey Sukharev

March 24, 2006, Workshop, Böblingen

Abstract

• Automatic Device Model Synthesizer (ADMS) now provides the ability
to create all required functionalities in Compiled-Model Interface (CMI)
XML scripts for API specific simulators. This poster dedicated to
approaches of implementation of most significant features in CMI XML
scripts used by ADMS for Spectre. Approaches for implementation of
new features were described and can be taken as template as a start
of implementation other functionalities. Sometimes, there is no need to
make changes in ADMS data tree, we change common properties of all
simulators instead. ADMS is a translator which assembles using
internal data tree Your unique code contained in XML scripts, –
therefore intellectual property is safe. Close support of latest Verilog-A
LRM is important. For example, support of voltage contribution and
time integral operator allowed to translate more complex device models
such as Hicum and PSP Verilog-A models, which become standard.

Introduction into ADMS and XML
technologies

ADMS is a code generator that converts
electrical compact device models
specified in high-level description
language into ready-to-compile c code for
the API of spice simulators. Based on
transformations specified in xml language
adms transforms Verilog-AMS code into
other target language.

admsXml - interprets the admst
intructions found in file myadmst.xml and
apply the instructions to the contents of
the verilog-ams file myverilogams.va.
admst path - how to navigate inside the
adms internal data tree. admstpath gives
the details of the yacc grammar used to
build the admst path parser. The admst
path is very similar to the xml xpath
language. This is due to the limitations of
the method applied to build the parser into
adms. admst path have a lexical
terminals.
adms internal data tree . After parsing an
input file adms creates a tree - called
adms internal data tree. The adms data
tree is the internal representation of the
parsed input.

Usage of ADMS tool
• A typical run of adms is shown below:

admsXml <vafile> -e <myinterface-file1>.xml -e <myi nterface-file2>.xml -e ...

The language used to build the .xml files - called admst language – more described on mot-adms.sf.net.

• Why in adms uses admst and admstpath instead xslt and xpath?

The reason is that the available xslt package was too slow at the time on investigations (mid 94) and some transforms (like
admst:open) were not supported. Same thing for xpath. In the future plan to use xslt and xpath. (xpath will be the easiest thing to
do since admstpath is a miniset of xpath.)

• What is the parsing/elaboration flow in ADMS?

Here is the sequence:

<inputfile>

[parsed by admsPreprocessor]

<.inputfile.adms created>

[parsed by admsVeriloga]

<internal tree created that uses adms.xml data structure>

<.adms.implicit.xml is created>

[.adms.implicit.xml is parsed]

[at the same time all xml files are parsed]

<outputs created depending on contents of xml files>

• Versions. The latest version of ADMS is 2.2.0

where:

- 0 means changes connected with fix or improvement

- 2 means changes connected with XML scripts

- 2 means changes connected with changes in verilog-a parser

New implemented capabilities

In poster are presented new capabilities implemented in

Spectre CMI XML scripts:

• Multiplicity factor ($mfactor)

• Current and voltage contributions

• Time integral operator (idt)

All capabilities were implemented according to Veriloga-A LRM-2.2

reference

Multiplicity factor in Spectre CMI XML scripts

$mfactor is the shunt multiplicity factor
of the instance, that is, the number of
identical devices that should be
combined in parallel and modeled.

***Netlist with m-factor used with ADMS
Spectre CMI bsim3v3, which illustrates
dependence of value Cbd from m-factor

simulator lang=spectre
model mynmos admsbsim3v3
+ model parameters
…
…
Vds_nmos (d 0) vsource dc=0 \
type=pulse val0=0.0 val1=5 period=25n \
delay=10n rise=5n fall=5n width=10n

M0 (d 0 0 0) mynmos m=’value’ w=14u
l=0.35u ad=0.95u*(14u) \
as=0.95u*(14u) pd=0.95u*2+(14u) \
ps=0.95u*2+(14u) nrd=0 \
nrs=0 simulatorOptions
options …
tran tran stop=40n annotate=status
maxiters=5Dependence on value m = [1..3] we can see different Cbd

Voltage and Current contributions
• Verilog-AMS HDL uses the branch contribution

operator <+ to describe analog behavior. This
operator is only valid within an analog block.
Branch contribution statements are statements
which use the branch contribution operators to
describe behavior in terms of a mathematical
mapping of input signals to output signals.

• Branch . Each named branch is a separate
physical branch in the network. There is only
one branch created for an unnamed branch (All
references to the unnamed branch are folded
into one branch). For example, tree named
branches are created as follows:

branch (a,b) b1, b2, b3;

• Probes. A branch is a probe when it is only
referenced on RHS of the contribution
statement. There are flow and potential probes.

Equivalent circuit models for probe branches:

• Flow probe
I(c, d) <+ I(b1);

• Potential probe
V(c, d) <+ V(b1);

FWI: A probe cannot be both flow and
potential probe. i.e. You cannot reference
both I(b1) and V(b1) on the RHS if b1 is
only a probe.

Flow sources
• A branch becomes a source when it appears on the LHS

of a contribution statement. A source branch must
support probing of its flow and potential. (i.e. if a branch
appears on the LHS, we can reference both it's flow and
potential on the RHS).

• Flow source

I(c, d) <+ (expression without reference to b1);

• Flow source with potential probe

I(b1) <+ expression;
I(c, d) <+ V(b1);

• Flow source with flow probe

I(b1) <+ expression;
I(c, d) <+ K * I(b1);

• Flow source with both flow and potential
probes:

I(b1) <+ expression;
I(c, d) <+ K * I(b1) + R * V(b1);

Same as flow source with flow probe just use
V(b1) = V(a)-V(b);

Potential sources
• Potential source

V(b1) <+ (expression without reference to b1);

• Potential source with potential probe

V(b1) <+ expression;
V(c, d) <+ V(b1);

• Potential source with flow probe

V(b1) <+ expression;
V(c, d) <+ K * I(b1);

• Potential source with both flow and
potential probes

V(b1) <+ expression;
V(c, d) <+ K * I(b1) + R * V(b1);

Same as potential source with flow probe just use
V(b1) = V(a)-V(b);

Current Controlled - Current and Voltage Sources
//
// Current-controlled current source
//
//
// Downloaded from The Designer's Guide (www.designers-
guide.org).
// Post any questions on www.designers-guide.org/Forum.
// Taken from "The Designer's Guide to Verilog-AMS" by
Kundert & Zinke.
// Chapter 3, Listing 13.

`include "constants.h"
`include "discipline.h"

module my_cccs (p, n, pc, nc);
electrical p, n, pc, nc, pc_nc_probe;
output pc, nc;
input p, n;
parameter real gain = 1.333;
real Ipn;

analog
begin

Ipn = gain * I(pc,nc);
I(p,n) <+ Ipn;

// I(p,n) <+ V(pc_nc_probe)*gain;
// I(pc_nc_probe) <+ V(pc,nc);
// I(pc,nc) <+ V(pc_nc_probe);

end
endmodule

//
// Current-controlled voltage source
//
// Downloaded from The Designer's Guide (www.designers-
guide.org).
// Post any questions on www.designers-guide.org/Forum.
// Taken from "The Designer's Guide to Verilog-AMS" by
Kundert & Zinke.
// Chapter 3, Listing 13.

`include "constants.h"
`include "discipline.h"

module my_ccvs (p, n, pc, nc);
electrical p, n, pc, nc, p_n_flow, pc_nc_probe;
output pc, nc;
input p, n;
parameter real gain = 1.333;

analog
begin

V(p,n) <+ gain * I(pc,nc);

// I(p_n_flow) <+ V(pc_nc_probe)*gain;
// I(pc_nc_probe) <+ V(pc,nc);
// I(pc,nc) <+ V(pc_nc_probe);
// I(p_n_flow) <+ -V(p,n);
// I(p,n) <+ V(p_n_flow);

end
endmodule

Time integral operator

• According to Verilog-A LRM 2.2, ‘idt’ is analog operator computing the time-integral of its argument.

idt(expr, IC)

When specified with IC, idt() returns the value of the IC in DC and IC analyses whenever assert is given and is
non-zero. Without IC, it can only be used in a system with feedback which forces its argument to zero.

• Example with ‘idt’ contribution

V(out) <+ idt(V(in), IC, Reset)

Where: IC (double) - initial condition.

Reset (int) - When 1, the output is reset to IC.

Reset can be bias dependent. (it requires an evaluation).

Equations when Reset = 0:

1: V(out) – f(V(idt)) = 0; Branch flow equation
2: ddt(V(idt)) + f(V(in)) = 0; Idt node equation

Idt() computation
// My Integrator

`include "discipline.h“

module my_mos(d,g,s,b);

inout d,g,s,b;

electrical d,g,s,b;

electrical d_s_flow, idt0;

parameter real IC=0.0;

analog begin

// V(d,s) <+ idt(V(g,b),IC);

// I(d_s_flow) <+ idt(V(g,b),IC);

I(idt0) <+ -V(g,b); // 1 during tran

I(idt0) <+ V(idt0)-IC; // 1 during DC

I(idt0) <+ ddt(V(idt0)); //1 during tran this is zero

I(d_s_flow) <+ V(idt0); // 2

I(d_s_flow) <+ -V(d,s);

I(d,s) <+ V(d_s_flow); // 2 and V contribution

end

endmodule

* Tran analysis

simulator lang=spectre

model test_idt my_mos

M1 (d g 0 0) test_idt

V1 (g 0) vsource dc=0.0 type=pulse val0=0 val1=1 delay=0 +rise=1e-10

+fall=1e-10 width=1e-08 period=2e-08

R1 (d 0) resistor r=1

tran1 tran stop=40n step=0.1n

save d V1:n

It is interesting to look at Jacobian of this netlist used ADMS
Spectre CMI integrator

Performance
• Performance comparison between the hand-coded models,

ADMS-generated models and the simulation using general
Verilog-A flow was provided. BSIM3v3 was selected for
comparison. Benchmarks were used as open source
CircuitSim90 with add32.ckt, ram2k.ckt, mem_plus.ckt,
sqrt.ckt, sram.ckt. So far as hand-coded model already
optimized the source code getting by ADMS and Spectre CMI
XML scripts was compiled with the same level of optimization.

0%

20%

40%

60%

80%

100%

Newton iter CPU Elapsed Memory

add32.ckt

verilog-a

adms

built-in

There are five benchmarks with max quantity

of transistors around 14000. In the

performances were compared:

• Number of accepted tran steps;

• Number of Newton iterations;

• CPU time;

• Elapsed time;

• Virtual memory used;

Comparison between Verilog-A module, ADMS
model and hand-coded (built-in) model was
the following:

• Built-in model proved to be faster then
ADMS model in maximum 10 %;

• And accordingly built-in faster then Verilog-a
model in almost 10 times, but Verilog-a is a
interpreter, not a model compiler yet.

Conclusion

• Our group adopted the ADMS model compiler technology to provide a link to
the CMI used by Spectre and UltraSim. Cadence’s early support for ADMS
influenced the CMC’s decision to adopt Verilog-A as a standard language for
compact device models. We have worked closely with SONY, Freescale and
University of Dresden (for HICUM model), to proliferate this technology. The
ADMS tool offers an excellent modeling environment. It allows faster
development of advanced models and faster implementation into commercial
IC design tools. Furthermore, developers of new compact models now have
access to the coherent and highly reliable modeling framework simplifying
model evaluation procedures and verification tasks across different simulation
platforms and operating systems.

The described approaches of implemented functionalities in Spectre CMI XML
scripts makes us closer to translating and supporting of more complex models.
We are going to continue efforts for investigations and implementations of new
features according to Verilog-A LRM-2.2. The performance of ADMS devices is
very important, too.

Thanks a lot for your attention

