
LDMOS Transistor Modeling "The Skeleton in the Cupboard"?

- -Many unsolved problems in HV MOS Transistor modeling
- -Accuracy of HV SPICE models are not comparable to standard MOS

Different Devices and Requirement

RF LD MOS

HV Transistor Model Requirements (first order)

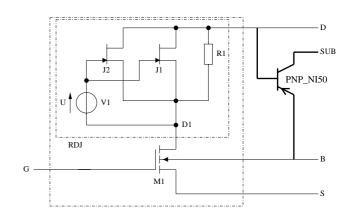
- -DC & AC characteristic
 - Scalability of W & L, Quasi-Saturation, drift region, Intr.
 Extr. Caps.
- -Symmetrical and unsymmetrical, source & drain res and cap.
- -Voltage up to 120V & Temperature behavior up to 180°C
- -Physical parameter set (Statistical Corner & MC Modeling)
- -Self heating effects
- -Noise Modeling (1/f, thermal, (gate induced))
- -Simple and comprehensible parameter extraction.

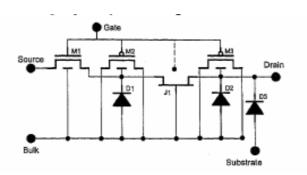
HV Transistor Model Requirements II

- -Capable of creating statistical models
- -Substrate current modeling
- -Transient behavior RF characteristics (in a limited subset of applications)
- -Parasitic modeling (parasitic bipolar, body diode recovery)
- -Breakdown characteristics
- -Scalable over the drain extension length.

Model Solutions

Sub-circuits (Macro model):


- Compatible to all simulators
- Higher simulation time, convergence


Compact Model with internal node:

- Node solved internally or from the simulator
- Higher simulation time, convergence

Compact Model:

- Combination of the low voltage MOS region with the high voltage drift region without internal node.
- Short computation time

An Improved LDMOS Transistor Model That Accurately Predicts Capacitance for all Bias Conditions

S.F. Frère 1,2, P. Moens B. Desoete D. Wojciechowski A.J. Walton P.

¹AMI Semiconductor Belgium BVBA, Westerring 15, Oudenaarde, Belgium, steven_frere@amis.com

²School of Engineering and Electronics, SMC, The University of Edinburgh, Edinburgh, Scotland, UK.

SYNOPSYS- HSPICE level 66

Press Release

Synopsys' HSPICE High-Voltage MOS Transistor Model Adopted by UMC Strength of our level 66 HVMOS

- a) a global model for high Vgs and low Vgs at the same time
- b) easier to extract the model card and easier to verify
- c) much more accuracy with BSIM-4 based methodology

-Level 66 is not public domain

BCD (Bipolar CMOS DMOS) means more then LDMOS

- -N-LDMOS
- -N-VDMOS
- -P-MOS
- -HV NPN, PNP
- -Lateral PNP, NPN
- -.... 5V, 12V, 20V, 50V, 80, 12Uv,.....
- -HV characterization of passives
- 30V/45V 70V/80V/90V 45V/80V/90V P-MOS N-VDMOS P-MOS SV CMOS

Roadmap Differentiation and Emerging Trends in BCD Technology

Claudio Contiero, Antonio Andreini and Paola Galbiati*

STMicroelectronics, TPA Groups R&D Department, Cornaredo, *Agrate, Milan, Italy

E-mail: claudio.contiero@st.com

- -High temperature modeling for Automotive applications
- -HV modeling of the parasitics

CMC Activities

- -The CMC is in fact beginning to look into standardization of HV MOS models.
- -Yutao Ma of Cadence is leading this effort which is just getting underway.