Semi-Analytical Model for Leakage Current in Ultra-Short DG MOSFET Based on NEGF Formalism

Fabian Hosenfeld1,2 Michael Graef1,2, Fabian Horst1,2, Benjamin Iniguez2, Francois Lime2, Alexander Kloes1

1Competence Centre for Nanotechnology and Photonics, Technische Hochschule Mittelhessen, Gießen, Germany
2Universitat Rovira i Virgili, Tarragona, Spain

MOS-AK, March 18$^{\text{th}}$, 2016
Introduction

Device Simulation
- Atomic scale
- Numerical solution

Poisson Solver
Transport Solver - NEGF

Multiscale Simulation
- Semi-analytical
- Closed form solution of Poisson -> NEGF

Poisson Solution
Transport Equation - 1D NEGF
Current

Circuit Simulation
- Terminal voltages/currents
- Analytical solution

Poisson Solution
Classical Transport Equations
Current
Advantages

Advantage
- Quantum effects in transport direction included
- Source to Drain tunneling
- Faster than classical device simulation

Disadvantage
- Not self consistent (to be shown if sufficient)
- Slower than compact model
Concept of the Modeling Approach

Electrostatics: 2D closed-form potential solution

One-dimensional NEGF

Device current

Electrostatics

- 2D closed-form solution of Poisson’s equation
- Based on conformal mapping
- Mobile charge neglected (subthreshold)
- Effective built-in potential model

One-dimensional conduction bands (slices from source to drain)
NEGF – Without Scattering

Hamiltonian:

\[T = \frac{\hbar^2}{2ma^2} \]

Green’s function:

\[G(E) = \left[EI - H_L - \Sigma_1 - \Sigma_2 \right]^{-1} \]

Electron density:

\[\tilde{\rho}(E) = \frac{F_1[A_1(E)] + F_2[A_2(E)]}{2\pi} \]

Integration over energy:

\[\rho = \int \tilde{\rho}(E) dE \]

1D Current in one slice:

\[I = -q \cdot Trace(\rho J_{op}) \]
Device Current

- Surface current
- Center current
- Parabolic function (Gate to Gate)
Results

- **Compared against TCAD 2D NanoMOS**

- **Device parameters:**
 - $t_{ch} = 2$ nm
 - $l_{ch} = 6$-10 nm
 - $l_{sd} = 10$ nm
 - $t_{ox} = 2.4$ nm
 - $N_{sd} = 2 \times 10^{20}$ cm3
 - $\varepsilon_{ox} = 16 \times \varepsilon_0$
 - $m = 0.19 \times m_0$
 - $V_{ds} = 0.4$ V
 - $\theta=300$ K

- **Fitting of V_{fb} (quantum confinement)**

- **Fitting of effective mass**
 $m = 0.29 \times m_0$ for $t_{ch} = 1$nm
Electron Density

$t_{ch} = 2 \text{ nm}, \ l_{ch} = 6 \text{ nm}, \ V_{ds} = 0.4 \text{ V}$
Model vs. TCAD: Drain Current

\[I_d / \mu A/\mu m = 10^{2} \]

\[V_{ds} = 0.4 \text{ V} \]

\[L_{ch} = 10, 9, 8, 7, 6 \text{ nm} \]

\[t_{ch} = 1 \text{ nm}, \quad L_{ch} = 6 \text{ nm} - 10 \text{ nm}, \quad V_{ds} = 0.4 \text{ V} \]
Model vs. TCAD: Drain Current

$V_{ds} = 0.4 \, \text{V}$
$
\vartheta = 75 \, \text{K}, 300 \, \text{K}$

$t_{ch} = 2 \, \text{nm}, l_{ch} = 6 \, \text{nm, 10 nm}$

$60 \, \text{mV/dec}$
$15 \, \text{mV/dec}$
Model vs. TCAD: Subthreshold Slope

\[t_{ch} = 2 \text{ nm}, \; l_{ch} = 6 \text{ nm}, \; 10 \text{ nm}, \; V_{ds} = 0.4 \text{ V}, \; \theta = 75 \text{ K} - 300 \text{ K} \]
Future Work

- Speedup approach by avoiding numerical integration over energy:
 - Calculate current only at significant points in energy spectrum
 - Define empirical analytical function which allows for integration over energy in closed form

\[t_{ch} = 2 \text{ nm}, \ V_{ds} = 0.4 \text{ V} \]
Acknowledgements

This project was supported by:

- German Federal Ministry of Education and Research under contract No.03FH001I3
- We would like to thank Keysight Technologies and AdMOS for support and software donation of IC-CAP.