Effect of a Local Ground and Probe Radiation on the Microwave Characterization of Integrated Inductors

Behzad Rejaei, Atef Akhnoukh, Marco Spirito, Student Member, IEEE, and Leonard Hayden, Senior Member, IEEE

Measurement Model for Integrated Inductors

- **Schematic of 2-port S-Parameter Measurement of 2-Terminal Device**
- **Test Structures used for this Study**
- **Measurement model for two-terminal device**
- **Cross section of coaxial cable inside RF probe**
- **Isolation and Thru test device structures for deembedding**

Results using conventional meas. methods

- **2-port S-Parameter Measurements:**
 - HP (Agilent) 8510 VNA
 - Infinity Probe GS 200µm
 - LRM Calibration

Results after deembedding

- **Considerably less variability**
- **Almost independent from used ground patch**
- **Note: High resistance contact (possible particle) observed in L2a**

Conclusions

- **S-Parameter measurements of integrated inductors depends on local ground patch**
- **Parasitic asymmetric currents causes unexpected ripple**
- **A model to analyze the effect of ground structure and asymmetric currents was developed**
- **Model was verified by experimental measurements of spiral inductors with different ground patches**
- **De-embedding technique developed and applied**
- **De-embedded results almost independent from used ground patch**