

Challenges & Strategies for the SPICE Model Extraction & Simulation of the PD-SOI Technology

Jung-Suk Goo

Compact Modeling & Characterization Group Microprocessor Solutions Sector, Sunnyvale, CA

Advanced Micro Devices

Outline

- Bulk CMOS vs. PD-SOI CMOS
- Self-heating
- Floating-Body Modeling: History-Effect
 - Definition
 - Underlying Physics
 - Key Components & Their Impacts
- Parameter Extraction Flow
- Challenges in Measurement & Extraction
- Tied-Body Modeling
 - History–Effect in Tied-Body CMOS
 - Parasitic Gate Capacitance
 - Distributed Body Resistance
- Conclusion

Outline

- Bulk CMOS vs. PD-SOI CMOS
- Self-heating
- Floating-Body Modeling: History-Effect
 - Definition
 - Underlying Physics
 - Key Components & Their Impacts
- Parameter Extraction Flow
- Challenges in Measurement & Extraction
- Tied-Body Modeling
 - History–Effect in Tied-Body CMOS
 - Parasitic Gate Capacitance
 - Distributed Body Resistance
- Conclusion

Bulk CMOS vs. PD-SOI CMOS

- The chief difference of the PD-SOI is that the body of each SOI transistor is an independent 4th terminal for the device
- When absolutely needed, the body can be fixed to a chosen potential with a body tie:

However, in 99.9% of the chip, transistors will be operating as floating body devices

Self-Heating

- Thermal conductivity
 - $K_{si} = 60 148W/mK$
 - $K_{ox} = 0.2 1.2 W/mK$
- Relatively poor modeling
- Occasional convergence issue

Outline

- Bulk CMOS vs. PD-SOI CMOS
- Self-heating
- Floating-Body Modeling: History-Effect
 - Definition
 - Underlying Physics
 - Key Components & Their Impacts
- Parameter Extraction Flow
- Challenges in Measurement & Extraction
- Tied-Body Modeling
 - History–Effect in Tied-Body CMOS
 - Parasitic Gate Capacitance
 - Distributed Body Resistance
- Conclusion

CMOS Inverter Operation

Definition of History-Effect

- 1st switch: input transition after being held constant for a long time.
- 2nd switch: input transition short time after the 1st switch.

Typical History-Effect

 Delay is subject to switching history of the logic gate.

Input Clock Shape

What Causes History-Effect?

- Body Potential is a function of:
 - Capacitive coupling to
 - Source
 - Drain
 - Gate
 - Substrate (small)
 - Diode Leakages to
 - Source
 - Drain
 - Gate Leakage
 - Impact Ionization
- Also subject to the *previous switching history*

10

Combined Capacitive/Resistive Network

Time for Actual Contribution to Speed

• 1st SW : Initial DC

2nd SW : Initial DC + Capacitive Coupling

Capacitive Coupling

 Capacitive coupling is stronger to drain than to gate.

Key Components (Initial DC Condition)

- 1st SW Initial
 - KCL balance between forward and reverse I_{diode}
 - Accumulation I_{gb} is much smaller than forward I_{diode}
- 2nd SW Initial
 - KCL balance between forward I_{diode}*2 and inversion I_{gb}

Key Components (AC Coupling)

- Basically a voltage-divider that consists of:
 - gate-body capacitance and junction capacitance
- Drain AC coupling is more significant than gate AC coupling

Key Components (Body-Effect)

- Body potential is established mostly by diode and gate characteristics (DC & AC).
- This body potential is translated into the actual switching performance by the body-effect (the main transfer function).

Impact of Gate Capacitance & Current

- Cgb is critical for V_{DD} dependence slope
- Igb is a major factor in 130nm technology and below

Impact of Diode Current

• The diode current characteristic is the key characteristic dominating the V_{DD} and temperature dependences of the history-effect:

MOS-AK 2005

- Proportional to forward Idiode
- Inversely proportional to reverse Idiode

Outline

- Bulk CMOS vs. PD-SOI CMOS
- Self-heating
- Floating-Body Modeling: History-Effect
 - Definition
 - Underlying Physics
 - Key Components & Their Impacts
- Parameter Extraction Flow
- Challenges in Measurement & Extraction
- Tied-Body Modeling
 - History–Effect in Tied-Body CMOS

MOS-AK 2005

- Parasitic Gate Capacitance
- Distributed Body Resistance
- Conclusion

Do History-Effect Modeling First!

Intrinsic MOSFET characteristics has only small impact on history effect.

20 20/09/05 MOS-AK 2005

PD-SOI Parameter Extraction Procedure

Challenges in Measurement & Extraction

Parasitic Opposite-Type Gate

- Big discrepancy in Igb characteristic due to the parasitic
 - Especially in inversion region
- Need a bulk wafer

Fully-Depleted Neck

Low-doping neck can cause artifacts in measured data

Back-Bias Range of Interest

- Sometimes the body effect is not able to fit for the entire range.
- Then some range should be compromised.
- Separating TB and FB models maybe more desirable.

Outline

- Bulk CMOS vs. PD-SOI CMOS
- Self-heating
- Floating-Body Modeling: History-Effect
 - Definition
 - Underlying Physics
 - Key Components & Their Impacts
- Parameter Extraction Flow
- Challenges in Measurement & Extraction
- Tied-Body Modeling
 - History–Effect in Tied-Body CMOS
 - Parasitic Gate Capacitance
 - Distributed Body Resistance
- Conclusion

Can Body Be Really Tied?

- Tied-body PD-SOI circuit experiences the coupling effects exactly same as floating-body one.
- Thus it exhibits history effect too.

BSIM-SOI: Gate Capacitance

BSIM-SOI: Gate Capacitance

3

BSIM-SOI: Gate Capacitance

- The charge ratio is 0.2~0.5 within practical range
 - 2 ~ 5x overestimation
- Its impact of switching delay is not negligible

BSIM-SOI: Distributed Body Resistance

 R_{hnH}/N

p+/*p*-

cap

Distributed Nsegments n+/pcap FEX FEX PEX Single Lumped

BSIM-SOI: Distributed Body Resistance

Rule of Thumb

- Factor of 1/3 for single-side contact; 1/12 for double-side contact
- Mathematically derived for gate resistance noise
 - R. P. Jinal, IEEE T-ED, pp. 1505-1509, October 1984
- Applicable for other distributed resistance associated with active gain

MOS-AK 2005

Conclusion

- Self-heating is poorly modeled in general and worsens the convergence
- History-effect is one of the major difficulties in floating-body PD-SOI parameter extraction
 - It has to be taken care of in the early stage of extraction
 - Accurate measurement & extraction of key components are very tricky and challenging
- Tied-body PD-SOI parameters need to be carefully chosen for BSIM-SOI model
 - Parasitic gate capacitance needs to be scaled
 - Body resistance should be scaled by 1/3 for single-side; 1/12 for double-side

