Circuit Modeling of Non-volatile Memory Devices

M. Sadd, R. Rao, R. Muralidhar R. Thoma September 16, 2005

- Introduction to flash
- Capacitor sub-circuit and sense model
- Challenges in Thin film storage model
 - Program/Erase and Endurance2-bit per cellReliability

NVM operates with processes that normally cause failure

Example	NVM Process	Failure Mode
Fe-RAM	Ferro-Electric Hysteresis	V _t instability in High-k dielectrics
SONOS	Charge Trapping in gate stack	Fixed Charge instability
Flash	HCI Programming/ Tunnel Erase	Stress-induced trap creation and charging

 Need to model effects that are minimized in most other devices!

Flash Cell Over-view

Flash Cell Operations

Simple Approach

- Separate models for program/erase V_t
- More flexible sub-circuit

Floating Gate Capacitance Model

• As α_g increases, V_{FG} emulates more the control gate potential

Flash Sense Model

- Charge stored on floating node: $Q_{FG} \sim C_{mos} V_{fg} + C_{fs} V_{fg} + C_{fd}(V_{fg} - V_d) + C_{cg}(V_{fg} - V_{cg})$
- Define coupling ratios: $\alpha_{g} = C_{cg} / (C_{cg} + C_{mos} + C_{fd} + C_{fs})$ $\alpha_{d} = C_{fd} / (C_{cg} + C_{mos} + C_{fd} + C_{fs})$

$$V_{T}$$
 ~ - Q_{FG}/C_{cg} + (1/ α_{g}) $V_{T,FG}$ - (α_{d} / α_{g}) V_{d}

- Charge of floating node shifts V_t
- Drain coupling to floating gate introduces "DIBL"
 - Typically α_g = 0.5-0.75 and α_d ~ 0.1

Sense Model: Extraction

- Extract base MOSFET model by accessing floating gate
- Compare to bit-cell to obtain coupling capacitances
- Requires comparison of two devices ⇒ subject to mis-match errors
- Extraction with bit-cell alone (e.g. ref) = requires erase or program model

Flash Sense Model: Use

- Model may only be used for transient simulation
- **Example: Generating an Id-Vg** curve
 - 1. Ramp Drain from 0 to Vd
 - 2. Ramp Gate from 0 to Vg
 - 3. Compute Idrain
 - 4. Idrain vs. Vgate
- Ramp slow enough that transient currents (C dV/dt) ~ 0
- Not restrictive: Model used mainly for timing

• May build a DC Flash model:

Solve for Floating node potential for capacitor subcircuit model

- See:
 - Y. Tat-Kwan, et. al. IEDM Tech Dig. p. 157 (1994)
 - L. Larcher, et. al. IEEE Trans. Elec. Dev., 49 p. 301(2002)
- Voltage source sets $V_{\rm fg}$ such that charge $\mathbf{Q}_{\rm FG}$ is conserved

Flash Program/Erase Model

- Multiple Time scales:
 - Read ~ 10 ns
 - Program ~ 1 μs
 - Erase ~ 100 ms
 - Retention/Read Disturb ~ 10 Years
- Read ⇒ tightest timing, so most need for circuit simulation
- Program/Erase ⇒ May need a circuit model (multi-level storage)
- Most models add non-linear resistor or current source

Floating Gate and Discrete Trapping NVM

4Mb Memory Array

 4Mb Nanocrystal Memory arrays fabricated using 90nm CMOS process technology

FN Erase Model

Time (s)

- WKB Tunneling current from nanocrystal, field dependent gate injection current and Coulomb blockade
- Model matches experimental results

Nanocrystal Memory: Read disturb of Program State

Additive temperature activated component:

- ①Temp ① Accessible Defects
- Possible extrinsic effects
- Model matches experimental results

Non-uniform Charge Storage

Hot-carrier injection stores charge locally near diffusions:

V_T a function of charge location ⇒ basis of 2-bit/cell

Charge-Trapping NVM: 2 Bit Storage

• A simple circuit model:

Forward V _t	Reverse V _t	State
High	High	11
High	Low	10
Low	High	01
Low	Low	00

Approximate 2-D Poisson equation including $\Delta V_t(y) \propto \sigma(y)$:

$$\ell^2 \frac{\partial^2 \psi_s(y)}{\partial^2 y} + V_{gs} - V_{t0} - \Delta V_t(y) + 2\phi_f - \psi_s(y) = 0$$

V_G when minimum at $2\phi_F \Rightarrow V_T$

Solid ⇒ Numerical device simulation

Dashed ⇔ Quasi-2D model

Reliability Model: For Retention and Read Disturb

- Non-linear current source ⇒ model charge loss:
- Integrate in log(t)
- dQ/d(log(t)) = t dQ/dt = t I_{tunnel}(V)
- ⇒ May calculate long-time loss:
- Physics of charge loss (tunneling) is lumped into the non-linear current source

- Capacitor sub-circuit

 foundation for flash
 model
- Appropriate for timing simulation
- May be augmented to model:
 - Program and erase
 - Vt drift due to P-E cycling
 - Reliability (charge loss or gain)
 - Device asymmetry (2-bit storage)

Michael Sadd: M.Sadd@frescale.com

Rajesh Rao: Rajesh.Rao@freescale.com

R. Muralidhar: RA4479@freescale.com

