DC and AC modeling of minority carriers currents in ICs substrate

Camillo Stefanucci, Pietro Buccella, Maher Kayal and Jean-Michel Sallese
Swiss Federal Institute of Technology
Lausanne, Switzerland

MOS-AK Workshop at DATE Conference
Grenoble, France, 12th March 2015
Outline

- Smart Power IC and existing design flow
- EPFL Substrate Model
 - DC examples
 - AC examples
- Model application and new design flow
Smart Power ICs

- High-voltage (50V) and low-voltage (5V) devices co-exists on the same chip
- Substrate triggered mechanisms cause destructive latch-up
- EPFL Substrate Model developed to simulate these effects during design

[1] B. Murari, Smart Power ICs, Springer-Verlag, 2002
Mixed-Signal Design flow

Design
Spice Simulation

Layout
Automation

Extract circuit parasitics from layout
Post-layout Simulation

Is Mixed-Signal Design Flow appropriate for robust High-Voltage / High Power Design?

Modify Schematics to meet design targets

Modify Layout to meet design targets

Foundry
Parasitic substrate currents

- Minority carriers’ propagation in the substrate
- Parasitic bipolar transistors automatically detected from layout
- EPFL Substrate Model is based on multi-junction parasitic current paths

Electrical circuit simulator neglects minority carriers!

EPFL Substrate Model

- **Physics** based model based on 1D drift-diffusion equation (**verilog-A**)
- 4-terminal devices: majority and **minority** carriers.
- Equivalent currents and voltages for minority carriers can be simulated at **circuit level**.
- Parasitic network extraction with a substrate **meshing** strategy.

EPFL diode

EPFL resistance

EPFL contact

Only diodes and resistors can simulate transistor effect!

Model under validation in AMS HV 0.35 μm and ST BCD 0.16 μm technologies
Model equivalent circuits

- **TCC** (Total Current Circuit) and **MCC** (Minority Carrier Circuit) highly coupled to model substrate conductivity modulation.

- Geometrical and technology (doping, lifetime...) input parameters for the model.

\[
G_{\text{min}} = \frac{qA}{\Delta x} (\mu_p + \mu_n) \hat{n}
\]

\[
G_0 = \frac{qA}{\Delta x} (\mu_p N_a + \mu_n n_0)
\]

\[
I_{\text{bulk}} = qA(D_n - D_p) \frac{d\hat{n}}{dx}
\]

\[
G_d = \frac{AD_n}{\Delta x}
\]

\[
G_c = \frac{A\Delta x}{2\tau_n}
\]

\[
g_{md} = A\mu_n \frac{V_{eq,1} + V_{eq,2}}{2}
\]

AC modeling extension

- **Capacitive effects** can be automatically tracked by the distributed substrate network approach.
- **Junction capacitance** is similar to the one of SPICE model and **diffusion capacitance** is dependent on minority carriers.

Model parameters

DC Model Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTUB doping</td>
<td>8.5x10^{18} cm^{-3}</td>
</tr>
<tr>
<td>PTUB doping</td>
<td>6.1x10^{16} cm^{-3}</td>
</tr>
<tr>
<td>PSUB doping</td>
<td>9.0x10^{14} cm^{-3}</td>
</tr>
<tr>
<td>τ_p hole lifetime</td>
<td>2.0 µs</td>
</tr>
<tr>
<td>τ_n elec. lifetime</td>
<td>5.0 µs</td>
</tr>
<tr>
<td>τ_{rec} rec. lifetime</td>
<td>3.5 µs</td>
</tr>
<tr>
<td>N junction depth</td>
<td>5 µm</td>
</tr>
</tbody>
</table>

AC Model Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC coefficient</td>
<td>1 µm</td>
</tr>
<tr>
<td>Grading coefficient m</td>
<td>0.5</td>
</tr>
<tr>
<td>Built-in potential</td>
<td>0.67</td>
</tr>
</tbody>
</table>
DC Parasitic BJT

Temperature dependencies are included as well in the model.

AC selected examples

Diode capacitance (and inductance) can be efficiently simulated.

BJT cut-off frequency and frequency degradation of beta can be simulated.

Spice simulation time 9 min – TCAD simulation time 10 hours
Transient simulations

- Transient study of coupling phenomena is different in low and high injection regime

Spice netlist (128 nodes) 10ms – TCAD 15s per time step
EPFL Model usage

1. Meshing

2. Equivalent Circuit

3. Simulation

Spice netlist (10000 nodes) < 2 min

High Voltage Design flow

- Design
 - Spice Simulation

- Layout Automation
 - Modify Layout to meet design targets

- Extract circuit parasitic from layout
 - Post-layout Simulation

- Modify Schematics to meet design targets

Add active protection to:
- suppress parasitic thyristor
- prevent Latch-up
Thank you!

Q&A

This work has been sponsored by FP7 AUTOMICS European Project