Silicon Radar GmbH
Im Technologiepark 1
15236 Frankfurt (Oder)
Germany

Radar System Design Considerations -- System Modeling Findings
(MOS-AK Conference Hangzhou 2017)
Outline

1 Introduction to Short Distance Radar Applications
2 FMCW Radar Basics (Frequency Modulated Continuous Wave Radar)
3 FMCW Radar System Model
4 Signal Leakage Causes & Modeling
5 Signal Leakage Effects & Compensation
6 Improved System Model
7 Results & FMCW Radar Demo
8 Silicon Radar at a Glance
Short Distance Radar Applications

**Gesture Recognition**
HMI for small displays

**Drones (UAVs)**
Sense & avoid, Landing assist,

**Industrial Sensors**
IoT; Industry 4.0 Factory automation

**Robotics**
Object detection, Collision avoidance, Collaboration

**Automotive**
Parking assist, Blind spot detection, Driver alertness, Autonomous driving
Application Requirements

• Miniaturized electronic components
• Low weight
• Low power consumption
• Low cost
• Mixed analog and digital signal designs

=> High performance, especially industrial applications
# Radar vs Other Sensor Technologies

<table>
<thead>
<tr>
<th>Application Flexibility</th>
<th>122 GHz Radar</th>
<th>24 GHz Radar</th>
<th>Infrared Triangulation</th>
<th>Ultrasonic</th>
<th>Laser</th>
<th>Magnetostriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniaturization</td>
<td><img src="#" alt="Green" /></td>
</tr>
<tr>
<td>Resistance to moisture, dirt, wind, darkness</td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Red" /></td>
</tr>
<tr>
<td>Accuracy Sensitivity and Resolution</td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
</tr>
<tr>
<td>Speed detection</td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
</tr>
<tr>
<td>Penetration of materials</td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
</tr>
<tr>
<td>Detection of special materials (glass, water, down)</td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
</tr>
<tr>
<td>Refresh rates</td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Red" /></td>
<td><img src="#" alt="Green" /></td>
<td><img src="#" alt="Green" /></td>
</tr>
<tr>
<td>Cost</td>
<td><img src="#" alt="Green" /></td>
</tr>
</tbody>
</table>
FCMW Radar Technology

- **Short range distance measurement**
  Measurement accuracy <1mm (<1µm in phase mode!)
  Range up to 40 meters with 120 GHz

- **Velocity measurement**
  Detection of moving targets by characteristic radar signature

- **Presence Detection**
  Presence detection in dead band through phase evaluation
FMCW Radar Basics

Sawtooth signal (ramp) tunes a VCO

Also: sine, triangle ...

B ... Bandwidth

\( t_r \) ... ramp time

\( t_d \) ... time diff. TX-RX

\( d \) ... distance to object

\[ \frac{t_d}{t_r} = \frac{f_b}{B} \]

\[ t_d = 2 \times \frac{d}{c} \]

\[ f_2 - f_1 = B \]

Modulated signal

\[ d = c \times \frac{f_b}{2 \times B} \]

Output spectrum

FMCW sawtooth ramp signal which tunes a VCO
Transceiver
+ Baseband
  • PLL
  • Clock
  • Filters
  • Amplifiers
  • ...

Analog 120 GHz radar transceiver chip
Microprocessor based FMCW radar system

1. 5m, -35dB
2. 12m, -59dB
3. 21m, -63dB
4. ...

Expected spectrum output

F

d (f)
Results: Signal Leakage

Small SNR
- < 40 dB max

Huge DC part
- > 40 dB
- Hides near targets

Frequency spectrum and CFAR output after FFT
Signal Leakage Causes

- TX to RX over substrate
- Packaging
- Power over f (VCO) / ramp

Leaked signal may be orders of magnitudes higher than the output signal
Chip Signal Leakage Modeling

- Hard to measure signal leakage
- Correction methods lacking
- Simulate part of the leakage (max 50%)

TX signal leakage through:
- Antenna
- Internal circuitry
Chip Signal Leakage Modeling

No Leakage

Strong Leakage

Conversion Gain

IF I/Q Differential Output Voltages (at -24dBm RF, 0dBm LO)

IF Outputs (at -24dBm RF, 0dBm LO)

IF Outputs (at -24dBm RF, 0dBm LO), AC coupled
Signal Leakage Effects

Ramp (red) and ramp enable signal (yellow)
Signal Leakage Effects

![Graphs showing signal leakage effects](image)

- **f**: Frequency
- **t**: Time
- **ADC value, I channel**: ADC values for the I channel over different points.
- **target detector**: Graph showing the detector response.

The graphs illustrate the comparison between an ideal signal and a signal with leakage effects, highlighting the differences in frequency response and ADC values.
Signal Leakage Cancellation

• Compensation in the chip is expensive and complicated
  --> Better use external correction methods

• Calibration with a known input signal that is substracked from the output spectrum is simple but very expensive, drift effects not covered (aging, temperature dependency)
  --> Better use dynamic corrections methods

• Combination of Filters (simple), DC-coupled diff. amplifiers or dynamic ramp compensation and software DC cancellation
  --> Best SNR / effort ratio
Signal Leakage Cancellation

- AC-Coupling: HPF or DC-coupled diff. amp
- But: ramp still contained in AC part of the signal
- Too much filtering increases the min distance
- Ramp compensation vs. target detection

Dynamic ramp compensation

- Further filtering & software DC Cancellation

![Signal Leakage Cancellation Diagram](image-url)
Microprocessor based FMCW radar system

1. 5m, -35dB
2. 12m, -59dB
3. 21m, -63dB
4. ...

Improved System Model
Results: Reduced Signal Leakage

Good SNR

• > 80dB

Reduced DC part

• by > 40 dB
FMCW Radar Demo
Summary: Design Considerations

Transceiver package and antenna size
• Low weight, low power, miniaturized

Low noise PLL
• Signal quality, range, accuracy

Pay attention to signal leakage
• Increase dynamic range

Transceiver frequency and bandwidth
• FMCW Radar: accuracy increases with bandwidth
• Pay attention to local regulations
Ultra Compact Radar Sensors

**Miniaturized Radar-Chips**
130nm SiGe BiCMOS
1.2 x 1.0 mm

**Ultra Compact Radar-Frontends**
With 2 ext. antennas within molded QFN package
8 x 8 mm QFN, 56 Leads, RoHS & REACH;
with 2 integrated antennas in 5 x 5 mm QFN

**Evaluation Radar-Sensor**
Implementing embedded baseband signal processing
Radar algorithms and target tracking

**Mass production**
Since 2015

**Assembly Process**

**Evaluation board**

**120 GHz Radar ICs / Frontends**
24 GHz Radar ICs
Receiver RX, Transceiver TRX, TRX2, LNA
Upcoming:
9.6 GHz, 10 GHz, 14 GHz, 24 GHz,
36 GHz, 60 GHz, 120 GHz
High-Prec. Sense/Avoid (120GHz ISM)

**Miniaturized**
8x8mm 56 Lead QFN with Antennas in Package

**License free**
Worldwide free of use ISM band with at least 1 GHz bandwidth

**Low Power**
370mW 112 mA at 3.3 V in full FMCW Mode

**Accuracy**
Distance measurement with accuracy of 700um within 20m

**Reliable**
100% secure detection of glass, water, absorbing materials

**Low Cost**
True low cost solution based on silicon process & plastic package

**120GHz ISM**

8x8mm <1g

120 GHz Radar Frontend

30.06.2017 © Silicon Radar confidential
Thank You for Your Attention

Please do not hesitate to contact us in any case of question.

info@siliconradar.com
+49 335 5571760

© Silicon Radar GmbH 2016. The information contained herein is subject to change at any time without notice.

Disclaimer: Silicon Radar GmbH makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any Silicon Radar product and any product documentation. products sold by Silicon Radar are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. all sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY BUYER AGREES NOT TO USE SILICON RADAR GMBH’S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

Silicon Radar GmbH owns all rights, title and interest to the intellectual property related to Silicon Radar GmbH’s products, including any software, firmware, copyright, patent, or trademark. The sale of Silicon Radar GmbH products does not convey or imply any license under patent or other rights. Silicon Radar GmbH retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by Silicon Radar GmbH. Unless otherwise agreed to in writing by Silicon Radar GmbH, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.