High Voltage MOSFET Technology, Models, and Applications

Vaidyanathan Subramanian, PhD
200mm Foundry Enablement
IBM Systems and Technology Group (STG)
Email: vaisubra@in.ibm.com
Outline

- Introduction to HV MOSFETs
- IBM’s HV value proposition
- IBM’s HV PDK offering
 - Technology
 - Devices
 - Models
- Recent publications, highlights
- Summary
High Voltage MOSFETs

- High Voltage MOSFETs are those that can support a higher VDS & ID than regular MOSFETs
- Because of this versatility they are used
 - To switch loads ON/OFF
 - To up- or down-convert between different voltage levels, or more generally, for Power Management
 - To provide high-power amplification
 - … And many more
Basic HV MOSFET circuits (building blocks)

Switch

Low Side Switch

High Side Switch

Voltage Converter

Vin Vin Vout Vout Vout < Vin; ‘Buck’ converter

Vin Supply Vout Vout > Vin; ‘Boost’ converter

Amplifier

RF In LDMOS Transistor RF Out
End applications of High Voltage Technology

• Consumer electronics
• Home appliances
• Automotive
• Medical
• Commercial & industrial lighting
• Controls
• Energy
• …And more

Applications of HV technology are in almost every aspect of modern life
High Voltage Technology can help in the following ways
- A more efficient switch implies reduced switching losses, resulting in reduced power consumption
- If the above switch can be controlled remotely (wirelessly), it translates into even more savings in power
- Above (switch with wireless control) approach can be used not only to save power, but also to harness power

High Voltage technology contributes to a Smarter, Greener Planet
How IBM technology fuels a Smarter Planet, from smarter computing to smarter devices

IBM’s USP is in providing a complete ecosystem for implementing end-to-end solutions encompassing digital, wireless and High Voltage technologies
Smarter Silicon Applications

Smarter Energy

- IBM offers unique RF + HV integrated solution which enables reliable, inexpensive Maximum Power-Point Tracking (MPTT) for solar panels
- Panel-Level Smarter Energy solution boosts the energy efficiency from 10-30%

Smarter Buildings / Industrial Control

- Seamless integration of digital, analog, power and RF enables more cost effective sensor and actuator designs
- Industrial rated technology 10+ year lifetime. High temp (150 C) rated for hostile environments
Smarter Silicon Applications

Smarter Lighting

- LED lighting is the future due to its potential for cost + energy savings
- Unique RF + HV integration capability enables new class of LEDs capable of remote control and management
- Wide range of voltages to enable wide range of LED applications
- Seamless integration of digital, analog, power and RF in single SoC
- Industrial rated technology 10+ year lifetime. High temp (150 C) rated for hostile environments
Outline

- Introduction to HV MOSFETs
- IBM’s HV value proposition
- IBM’s HV PDK offering
 - Technology
 - Devices
 - Models
- Recent publications, highlights
- Summary
IBM’s High Voltage PDK offering: CMOS7HV

First IBM Technology for Power-Management Chips
Brings new functionality to critical infrastructure

ARMONK, N.Y., Sept., 16, 2010 – IBM today announced innovative new chip-making technology for power-management semiconductors – the company’s first foray into a segment seen as critical to the development of alternative energy sources, smart buildings and new consumer devices.

IBM’s process integrates wireless communications into a single power-management chip, a first that cuts production costs (20% or more) to allow chip designers and manufacturers to create a new class of semiconductors – ultra-small and affordable chips that control power usage while they communicate in real-time with systems used to monitor “smart” buildings, energy grids and transportation systems.

“Advanced power management techniques will become increasingly important to support new forms of energy, communications and entertainment,” said Regina Darmoni, IBM Microelectronics. “By integrating new functions such as wireless communications, IBM’s process gives a head start to manufacturers who are looking to bring new advancements to consumers.”

IBM is rolling out the new chip-making process to manufacturers in the consumer electronics, industrial, automotive, digital media and alternative-energy segments. The company’s semiconductor plant in Burlington Vt., will be the primary manufacturing location for the new technology. IBM is already accepting designs from customers and is scheduling full production for the first half of 2011.

Result of collaboration between IBM and Austria Microsystems (AMS)
IBM’s High Voltage PDK offering: CMOS7HV

- 180nm minimum lithography
- Triple gate oxide technology supporting HV FETs
- Shallow trench isolation

- 3 to 7 levels of Al
 - Final thick wiring level for low resistance
- RF Features
 - Poly, diffusion, and well resistors, precision resistors
 - MIM Capacitors, Vertical Natural Capacitors
 - Varactors
 - HV Schottky Barrier Diode (SBD)
 - Inductors
- Electrically programmable fuse
- Wire bond or solder bump terminals
Technology Development Approach

- **Approach**
 - Build from previously qualified Logic CMOS base
 - Port common elements across multiple generation technologies
 - Add new features for RF Circuit Capability

- **Advantages:**
 - Faster learning
 - Common process recipes for improved process control
 - Enables reuse of existing design IP

CMOS
- Standard FETs
- I/O Thick ox option
- Resistors
- MOS Capacitor

RF CMOS
- CMOS plus:
 - RF Models
 - MIM capacitors
 - MOS varactor
 - Thick last metal (inductors)

HV RF CMOS
- RF CMOS plus:
 - LV Devices in HV wells
 - HV LDMOS FETS
 - HV resistors & capacitors
 - HV vertical bipolar transistors
CMOS 7HV Devices

Base 7RF Devices
- Thin oxide NFET/PFET 1.8V
- Medium oxide NFET/PFET for 5V use
 - High Vt NFET/PFET
- Super High Vt NFET/PFET*
 - N+ diffusion resistor
 - P+ diffusion resistor
 - N+ poly resistor
 - P+ poly resistor
 - K1 BEOL resistor
- RR High resistivity poly resistor
- RP precision poly resistor
- Single Nitride MIM
- Dual Nitride MIM
- MOS Varactor
- PCDCAP for 1.8V use
- PCAP for 1.8 and 5V use
- Vertical parallel plate capacitor (V/ncap)
- P-Schottky Barrier Diode
 - Efuse
 - Bondpad
- Inductors and T-lines

Modifications to 7RF devices for HV process
- Thin ox NFET/PFET 1.8V in HV wells
- High Vt NFET/PFET in HV wells
- Super High Vt NFET/PFET*
- Medium oxide NFET/PFET for 5V use in HV wells
 - N+ diffusion resistor in HV well
 - P+ diffusion resistor in HV well

High Voltage Devices
- Medium oxide NFET/PFET for 12V use
 - Thin oxide NFETi/PFET for 20V use
 - Medium oxide NFET for 20V use
 - Thick oxide NFETi/PFET for 20V use
 - Thick oxide NFETi/PFET symmetric for 20V use
 - Medium oxide NFETi/PFET for 25V use
 - Thin oxide NFETi/PFET for 50V use
 - Medium oxide NFETi/PFET for 50V use
 - Thick NFETi/PFET for 50V use
 - Thick NFETi/PFET symmetric for 50V use
- Medium Oxide NFETi/PFET for 120V use
 - 3 terminal JFET
 - Parasitic VPNP (high V)
 - Parasitic VNPN (isolated)
 - NWell resistor in HV well
 - PWell resistor in HV well
- High Voltage V/ncap (50 and 120V use)
 - High Voltage Schottky Barrier Diode

14 © 2009 IBM Corporation
CMOS7HV device menu

<table>
<thead>
<tr>
<th>Device</th>
<th>CMOS Base</th>
<th>HV Features</th>
<th>RF/HPA Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>FETs</td>
<td>1.8V Thin ox N/P FET</td>
<td>20V/50V Thin, Med and Thick ox N/P LDMOS</td>
<td>RF Analog FET Models</td>
</tr>
<tr>
<td></td>
<td>5.0V Medium ox N/P FET</td>
<td>Thick ox N/P FET symm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Vt N/P FET</td>
<td>12 and 120V Med ox N/P LDMOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super High Vt N/P FET</td>
<td>HV JFET, HV VPNP, HV VNPN</td>
<td></td>
</tr>
<tr>
<td>Resistors</td>
<td>N+, P+ diffusion resistor</td>
<td>NWell / PWell resistor in HV well</td>
<td>K1 BEOL resistor</td>
</tr>
<tr>
<td></td>
<td>N+, P+ Poly resistor</td>
<td>N+, P+ diffusion resistor in HV well</td>
<td>Poly res - RR High resistivity & RP Precision</td>
</tr>
<tr>
<td>Diodes</td>
<td>Low turn on Schottky Barrier Diode</td>
<td>High Voltage Schottky Barrier Diode</td>
<td></td>
</tr>
<tr>
<td>Decoupling caps and Varactors</td>
<td>Thin/thick ncaps/varactors, pcap</td>
<td>Thin/thick oxide pcap in HV well</td>
<td>Single / Dual MIM OR Single / Dual HD MIM</td>
</tr>
<tr>
<td>BEOL Capacitors</td>
<td>Vertical Native Capacitor</td>
<td>High Voltage VNcap</td>
<td></td>
</tr>
<tr>
<td>BEOL</td>
<td>6LM: M1 – M5, MT</td>
<td>Analog Metal</td>
<td>Analog Metal</td>
</tr>
<tr>
<td>Inductors</td>
<td></td>
<td></td>
<td>Analog Metal</td>
</tr>
<tr>
<td>ESD</td>
<td>1.8V/5V rc-clamp, esdnfet(opp), esdnfeti(opp), P/AP diodes</td>
<td>20V/25V/50V rc_clamp_EOS 2kV,4kV,8kV ratings, HV ESD trigger diodes, up/down diodes</td>
<td>Low capacitance options for RF pins</td>
</tr>
<tr>
<td>Triple well Isolation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
LDMOS FETs: What, Why

- The sub-200V domain is of great interest because of
 - Rapidly expanding applications and customer base ➔ $$$
 - Opportunities for integration and cost reduction ➔ $$$

- In OFF state, gate turns off current flow

- In ON state, gate turns on current flow via channel and drift region

- **ON resistance** (R_{on}) and **Breakdown Voltage** (BV) are important Figures of Merit of the LDMOS: Low R_{on} and High BV are desirable

- However, trade-off exists between R_{on} and BV
HVFET flavors

- Thin(T), Medium(M), Thick(H) or Step(MH) Oxide
 - Thin(1.8V), Medium(5V), Thick(20V)
 - To support different driving logic levels

- Symmetric or Asymmetric
 - To support unidirectional vs bidirectional operation

- Non-isolated or Isolated
 - Non-isolated
 - Used for low-side applications
 - Lower mask count and cost; lower RON
 - However, prone to substrate current injection effects
 - Isolated
 - For high side (half bridge) applications, isolated device (floating source) needed.
 - Immune from substrate current injection effects
 - Higher mask count and cost
CMOS7HV FET Flavors

- Asymmetric, Isolated, STI
- Asymmetric, Non-Isolated, Step Oxide
- Asymmetric, Non-Isolated, STI
- Symmetric, Non-Isolated, STI
HVFET target applications

<table>
<thead>
<tr>
<th>Vds</th>
<th>Vgs=1.8V</th>
<th>Vgs=5V</th>
<th>Vgs=20V</th>
</tr>
</thead>
</table>
| 12V | Mobile PMU/LMUs
Handheld PAs | Industrial LEDs & LED
backlights
Building automation 24V
Industrial sensors (MEMs)
Motor drivers & actuators
Wireless charging | Industrial sensors (MEMs)
Motor drivers & actuators
Industrial voltage regulators
Medical applications |
| 20/25V | Mobile LEDs & LED backlights
Audio Class D | Industrial LEDs & LED backlights
Building automation 24V
Industrial sensors (MEMs)
Motor drivers & actuators
Wireless charging | |
| 50V | Automotive
Renewable energy | Building automation 48V
Industrial sensors (MEMs)
Motor drivers & actuators
Wireless charging | Wired industrial controls |
| 85V | RF base stations | | |
| 120V | Renewable energy
Hybrid & electric vehicles
Medical imaging | | |
RF features in HV technology will enable new applications

- **Resistors**
 - Wide range of sheet resistances
 - Silicon/Polysilicon/TaN resistors available
 - Low VCR and TCR alternatives

- **Capacitors**
 - MIM caps as well as vertical VNCAPs

- **Varactors**
 - Scalable gate width/Length
 - 1.8V nMOS / pMOS accumulation caps

- **Inductors**
 - Scalable pCells with supporting models
 - Center tapped / symmetric spiral designs
HVFET models at IBM

- BSIM + subcircuit based
 - Core model is BSIM3
 - Subcircuit wrapper in order to model high voltage phenomena

- HiSIM-HV-based
 - High voltage features built-in to the model
BSIM-based models

- Regular models + sub-circuit extensions
 - **BSIM3** + JFET, resistor
 - Resistor and JFET for modeling drift resistance in linear and Quasi Saturation

Limitations

More complex sub-circuit topology
Despite sub-circuit elements, model accuracy is limited in linear and QS regions
Capacitance model accuracy is limited
No self-heating effect model
Cannot model double Impact Ionization

E. Seebacher, K. Molnar, W. Posch, B. Senapati, A. Steinmair, W. Pflanzl et al
HiSIM-HV model

- High Voltage Model “HiSIM-HV”
 - HiSIM_HV is the surface-potential (Φ_s)-based model which was selected by the Compact Model Council (CMC) as the industry standard high-voltage MOSFET model in December 2007.
 - HiSIM_HV is based on the HiSIM (Hiroshima-university STARC IGFET Model) model and features a consistent potential description across MOSFET channel and drift region.
 - Complete surface potential based model (including drift region).
 - Based on drift-diffusion theory using charge sheet and GCA.
 - Includes all effects observed in state-of-art MOSFETs.
 - Applicable to symmetric & asymmetric LDMOS FETs.
HiSIM-HV modeling options (Switches) available

- Symmetric vs Asymmetric device: COSYM=1,0
- Modeling of Source/Drain Resistance: CORSRD=0,1,2,3,-1
- Overlap charges/capacitances: COADOV=0,1
- Bias-dependent overlap capacitance at Drain side: COOVLP=0,1
- Bias-dependent overlap capacitance at Source side: COOVLPS=0,1
- Calculation of surface potential in overlap region: COQOVSM=0,1,2
- Inclusion of Self Heating Effect: COSELFHEAT=0,1
- Substrate current calculation: COISUB=0,1
- Gate current calculation: COIIGS=0,1
- GIDL current calculation: COGIDL=0,1
- STI leakage current calculation: COISTI=0,1
- NQS model: CONQS=0,1
- Gate resistance calculation: CORG=0,1
- Substrate resistance calculation: CORBNET=0,1
- 1/f noise: COFLICK=0,1
- Thermal noise: COTHRML=0,1
- Induced gate noise: COIGN=0,1
HISIM vs BSIM models comparison

I-V fits: BSIM (blue) vs HiSIM (red)
C-V fits: BSIM (left) vs HiSIM (right)

More accurate modeling of I-V and C-V using HiSIM-HV
HiSIM_HV Modeling flow and strategy

FET-mode measurements (currents, capacitances) ➔ FET model parameters
Internal diode I-V and C-V, 1/f noise

Diode-mode measurements (currents, capacitances) ➔ External diode parameters

BJT-mode measurements (currents, capacitances) ➔ External BJT model parameters

Statistical model (MC, Corners, mismatch)
Safe Operating Area model

Centered model ➔ As-fit model
Modeling of junctions

Each of the junctions has area and perimeter intensive layouts for extracting bottom and sidewall parameters

In addition, RX/SP and RX/SN junctions have STI-bounded layouts for extracting STI sidewall junction capacitance

External BJT model (Gummel-Poon) is used for modeling Forward & Reverse Gummel characteristics
Model features

- Existing HVFET models (20V, 25V, 50V) BSIM-based; New models (12V, 120V, 36V, 72V, 85V..) HiSIM-HV based
- All models validated across W,L and T(-40C to 180C)
- Models include
 - Process variations (Monte Carlo and corners)
 - Mismatch
 - 1/f noise (nominal & statistical)
 - Safe Operating Area (SOA)
Typical DC Model-Hardware Correlation (MHC) plots
Typical Model-Hardware Correlation (MHC) plots

Forward Gummel

Reverse Gummel

Junction capacitance

Inversion & overlap capacitance
Typical Model-Hardware Correlation (MHC) plots

1/f noise

Mismatch

\[\sigma_{\Delta I_d/I_d} \text{ vs } V_{GS} \text{ for different } L \]
Outline

- Introduction
- IBM’s HV value proposition
- IBM’s HV PDK offering
 - Technology
 - Devices
 - Models
- Recent publications, highlights
- Summary
IBM Publications on HV CMOS

ISPSD 2010

A 120V 180nm High Voltage CMOS smart power technology for System-on-chip integration

R. Minixhofer†, N. Feichtenfeld†, M. Knipp*, G. Röher*, J.M. Park*, M. Zierak†, H. Enichlmair†, M. Levy†,
B. Loeffler*, D. Hershberger†, F. Unterleiner†, M. Gauck†, K. Chatthy†, Y. Shii†, W. Posch†, E. Seebacher†,
M. Scherms†, J. Dann†, D. Harame†

* R&D Department
** Analog and Mixed Signal Development
austriamicrosystems AG
Unterpremstaetten, Austria

IBM Microelectronics Division
Essex Junction, Vermont

Design & Optimization of 120V NLDMS in 180nm HVCMOS Technology

Yun Shi, Theodore Letavic, Santosh Sharma, John Ellis-Monaghan, Natalie Feichtenfeld, Rick Phelps,
Don Cook, Christopher Lamothe, Jim Dunn

Analog and Mixed Signal Technology Development, IBM Microelectronics Division,
Essex Junction, Vermont, 05452, USA
Email: yunshi@us.ibm.com
Phone: 1-802-769-5867 Fax: 1-802-769-9452

A 90 to 170V scalable P-LDMOS with accompanied high voltage PJFET

John Ellis-Monaghan†, Yun Shi, Santosh Sharma, Natalie Feichtenfeld, Ted Letavic, Rick Phelps,
Crystal Hedges, Don Cook, Jim Dunn

IBM Microelectronics Division, Essex Junction, Vermont
Email: jjem@us.ibm.com
Phone: (802) 769-8627 Fax: (802) 769-9452

Hot-Carrier Behaviour and Ron-BV Trade-off Optimization for p-channel LDMOS Transistors in a 180 nm HV-CMOS Technology

Jong Mun Park†, Martin Knipp†, Hubert Enichlmair†, Yun Shi†, Rainer Minixhofer†, and Natalie Feichtenfeld†

† R&D Department
** Analog and Mixed Signal Development
austriamicrosystems AG
Tobelbader-Strasse 30 Unterpremstaetten, Austria

IBM Microelectronics Division
Essex Junction, Vermont, USA

ISPSD 2011

Drift Design Impact on Quasi-Saturation & HCI for Scalable N-LDMOS

Yun Shi, Natalie Feichtenfeld, Rick Phelps, Max Levy, Martin Knipp*, Rainer Minixhofer†

Analog and Mixed Signal Technology Development, IBM Microelectronics Division,
Essex Junction, Vermont, 05452, USA

* R&D Department, Austriamicrosystem, AG, Unterpremstaetten, Austria

Planar dual-gate oxide LDMOS structures in 180nm power management technology

Santosh Sharma†, Theodore Letavic†, Yun Shi†, John-Ellis Monaghan†, Natalie Feichtenfeld†,
Rick Phelps†, Christopher Lamothe†, Don Cook†, Jim Dunn†, Georg Roerher†, Helmut Naurnagl†, Rainer Minixhofer†

† Analog and Mixed Signal Development, IBM Microelectronics, Essex Junction, VT
** Austriamicrosystems AG, A-8141, Unterpremstätten, Austria
Email: sharma@us.ibm.com
Phone: 802 769 2211

ISPSD 2012 (accepted)

Influence of Drift region on the 1/f noise in LDMOS

A. A. Dikshiti, V. Subramaniam†, S. J. Pandharipande, S. S. Sirohi†, and T. J. Letavic†

† Semiconductor R & D Center, IBM India Pvt Ltd, Bangalore, India, ‡ Analog Mixed Signal Technology Development, IBM, Hopewell Junction, NY, USA

Email: anna@us.ibm.com
Phone: 91-80-28061320
RON has channel and drift region component

1/f noise also has channel and drift component

This paper explores

- Contribution of channel vs drift components of 1/f noise
- Extent of correlation between RON and noise
- Vd dependence of noise to study noise in saturated vs quasi-saturated LDMOS FETs
CMOS7HV Summary

- PDK Offering catering to a large spectrum of target applications
- Large base of IPs that have been co-developed and validated on silicon hardware
- Overall platform comprising digital (logic & memory), analog, RF and HV devices/IPs all integrated into a single design/simulation/validation flow
CMOS7HV Summary

- Enables cost-efficient integration of power-management technology

- High voltage design flexibility
 - A wide range of rated-voltage/BVds devices via 2D layout;
 derivative products without additional mask steps
 - 20V Gate Oxide, and 85V and 120V devices

- Integrated Wireless capabilities
 - Capacitors, Varactors, Precision Resistors, Inductors

- Offers risk-mitigation and time-to-market advantages
 - Industry-leading analog design enablement
 - Best of Breed correlation / accuracy in the industry
 - Robust library and device support
 - Leadership ESD enablement with reference circuits
 - Analog performance exceeding BCD technologies
 - Proven high-voltage CMOS technology

- Enables IP re-use
 - Compatibility with existing CMOS infrastructure ➔
 existing CMOS IP can be re-used on integrated designs

- Lower complexity when compared with bipolar CMOS/DMOS (BCD) technology

Thank you for the attention
Acknowledgements

- IBM US
 - Ted Letavic
 - Natalie Feilchenfeld
 - Dan Maynard
 - Kim Newton
 - Jui-chu Lee
 - Ted Anderson
 - Stephen St Onge

- IBM India
 - Amit Dikshit
 - Shrinivas Pandharpure
 - Vipin Madangarli
 - Anirban Bandyopadhyay