Status of the EKV3.0 MOS Transistor Model

Matthias Bucher,
Technical University of Crete
e-mail: bucher@electronics.tuc.gr

Antonios Bazigos,
National Technical University of Athens

François Krummenacher,
École Polytechnique Fédérale de Lausanne

MOS-AK/ESSDERC/ESSCIRC Workshop
Compact Modelling for Emerging Technologies
Friday, 22 September 2006
Montreux Switzerland
Presentation Outline

- About EKV3
- Model Code in Verilog-A
- Physical Effects & Parameters
 - Parameter Extraction Basic Methodology
- Modelling Results
- Summary
About EKV3

- A Design-Oriented, Charge-Based Model
- Moderate and Weak Inversion
- Special Attention to Analog/RF IC Design Requirements
 - High Frequency Operation, Noise
- All Pertinent Effects to 45nm CMOS
 - Scaling over Technologies, Geometry, Temperature, Bias
- Validated on Various CMOS Technologies.
 - TOSHIBA, Infineon, Cypress, Atmel.
 - Used for Commercial IC Design.
EKV: Charge Based Modelling

Inversion Charge

\[q_i = q_i (\Psi_s); \quad q_s, q_d \]

Drain Current

\[i = q_s^2 + q_s - q_d^2 - q_d \]

Transconductance-to-Current Ratio

\[\frac{g_m}{i_{d\text{sat}}} = \frac{1}{1/2 + \sqrt{i + 1/4}} \]

Transconductances

- \(g_{ms} \propto q_s \)
- \(g_{md} \propto q_d \)
- \(g_m \propto \frac{q_s - q_d}{n} \)

Capacitances & Charges

- \(Q_D \propto W \int_0^L x q_i dx \)
- \(Q_S \propto W \int_0^L \frac{1-x}{L} q_i dx \)
- \(C_{XY} = \pm \frac{\partial Q_x}{\partial V_y} \)

Short-Channel Thermal Noise Induced Gate Noise

...
EKV3 in Verilog-A

- The Verilog-A Code of EKV3.0
 - Hierarchical Structure
 - 18 files
 - one main file
 - many smaller
 - In Total: 83KB
 - Compatible with (at least)
 ELDO, ADS, SPECTRE, ADMS, …
 - Used as the Reference Code
 for all Model Implementations
 - ADMS provides “standard”
 C-code Various Simulators.
EKV3 and ADMS

- EKV3 Verilog-A Code Tested with ADMS (v2.1)
 - Current version: ADMS v2.2.4
- Tested with XML Interface for SPICE3
- Different XML Interfaces for Different Simulators
EKV3 “Design Kit” in ADS

- Tiburon: A Verilog-A Compiler in ADS
- An EKV3 “Design Kit” for ADS has been developed
 - Design Kit contains 8 Elements, only MOSFET
 - QS / NQS
 - NMOS / PMOS
 - MODEL-CARD / INSTANCE
 - 120nm CMOS Design Kit has been used to Design
 - Base-Band Elements (OP-AMPs)
 - LNA
EKV3 in ELDO (C-code)

- In ELDO a Hand-Written C-code Version of the Model exists
- Verilog-A Code: Simpler but less Efficient
 - Not always Efficiently handled by the Simulators
- Generally “Verilog-A + ADMS” and C-code have the same Functionality
Phenomena covered by EKV3.0 -- Associated Parameters

<table>
<thead>
<tr>
<th>Modelled effect</th>
<th>Related Parameters / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Modelling of Charges</td>
<td>COX(TOX), PHIF, GAMMA(NSUB), VTO(VFB), GAMMAG(NGATE)</td>
</tr>
<tr>
<td>Including Accumulation Region</td>
<td></td>
</tr>
<tr>
<td>Polysilicon Depletion, Quantum Mechanical Effects</td>
<td></td>
</tr>
<tr>
<td>Bias-Dependent Overlap Capacitances</td>
<td>LOV, GAMMAOV(NOV), VFBOV</td>
</tr>
<tr>
<td>NQS</td>
<td>[Channel Segmentation]</td>
</tr>
<tr>
<td>RF Model</td>
<td>[Appropriate Scaling of RG, RSUBs with W, L and NF]</td>
</tr>
<tr>
<td>External Sub-Circuit</td>
<td></td>
</tr>
<tr>
<td>Mobility (Reduction due to Vertical Field Effect)</td>
<td>KP(U0), E0, E1, ETA ZC, THC</td>
</tr>
<tr>
<td>Surface Roughness-, Phonon-, Coulomb Scattering</td>
<td></td>
</tr>
<tr>
<td>Impact Ionization Current</td>
<td>IBA, IBB, IBN</td>
</tr>
<tr>
<td>Gate Current (IGS, IGD, IGB)</td>
<td>KG, XB, UB</td>
</tr>
</tbody>
</table>

A. Bazigos -- MOS-AK Workshop, September 22, 2006
Phenomena covered by EKV3.0 -- Associated Parameters

<table>
<thead>
<tr>
<th>Modelled effect</th>
<th>Related Parameters / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Field Effect</td>
<td></td>
</tr>
<tr>
<td>Velocity Saturation, Channel Length Modulation</td>
<td>UCRIT (VSAT), LAMBDA, DELTA</td>
</tr>
<tr>
<td>Reverse Short Channel Effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LR, QLR, NLR</td>
</tr>
<tr>
<td>Inverse Narrow Width Effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WR, QWR, NWR</td>
</tr>
<tr>
<td>Drain Induced Barrier Lowering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETAD, SIGMAD</td>
</tr>
<tr>
<td>Source and Drain Charge Sharing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LETA, {LETA2}, WETA</td>
</tr>
<tr>
<td>Halo/Pocket implant effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LETA0</td>
</tr>
<tr>
<td>Edge Conduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEDGE, DGAMMAEDGE, DPHIEDGE</td>
</tr>
<tr>
<td>Geometrical Effects, Width scaling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Various Parameters (DL, WQLR, ...)</td>
</tr>
<tr>
<td>Noise</td>
<td>AF, KF</td>
</tr>
<tr>
<td>Flicker Noise, Short-Channel Thermal Noise,</td>
<td></td>
</tr>
<tr>
<td>Induced Gate and Substrate Noise</td>
<td></td>
</tr>
<tr>
<td>Temperature Effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Various Parameters</td>
</tr>
<tr>
<td>TOTAL</td>
<td><100</td>
</tr>
</tbody>
</table>
Basic Parameter Extraction Methodology

Wide Long CV
- CGG vs VG:
 - COX, VTO, GAMMA, PHIF, GAMMAG

Wide Short IV
- gm vs VG (lin):
 - DL, RSX
 - (fixing RSCE for correct V_{TO})

Wide Long IV
- gm vs VG (lin):
 - KP, E0, E1, [ETA]

Wide All Lengths IV
- VTO vs L:
 - LR, QLR, NLR
 - {RSCE}, [LETA, LETA2, ETAD]

Wide Short CV
- CGG vs VG:
 - LOV, GAMMAOV, [VFBOV], DLC

Narrow channel
similar procedure

Width scaling:
All lengths w.r.t. width

Narrow short
combined effects
[fine tuning]

Temperature analysis

END
Short-Channel Characteristics

$L = 70\text{nm}$

- Correct Weak & Moderate Inversion Behaviour
 - Smoothness and Correct Asymptotic Behaviour
 - Correct Weak Inversion Slope and DIBL Modeling
- Transconductance-to-Current Ratio vs. Drain Current (log. axis)
Short-Channel Output Characteristics

L = 70nm

L = 70nm VB = 0V

L = 70nm VB = -1V

A. Bazigos -- MOS-AK Workshop, September 22, 2006
NQS Model @ RF \([\text{Re}(Y_{21}), \text{Im}(Y_{21})]\)
Edge Conduction Effect on I_D and g_m/I_D

- **NMOS 10um/10um**
 - $L=10um$
 - $V_D=1V$

- **NMOS 10um/80nm**
 - $L=80nm$
 - $V_D=1V$
Gate Current & Edge Conduction

- Gate Current is also affected by Edge Conduction
- EKV3.0 gives reasonable fits to ID, gm/ID, IG even in case of presence of Edge Conduction Effect
- Edge Conduction affects gm/id dramatically in Weak-Moderate Inversion
Temperature Scaling

L = 150nm

- $I_D - V_G$ and $I_D (g_{ds}) - V_D$ vs. Temperature
EKV3 and Industries

<table>
<thead>
<tr>
<th>Company</th>
<th>Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOSHIBA Semiconductors</td>
<td>✓ 140nm</td>
</tr>
<tr>
<td></td>
<td>✓ 110nm</td>
</tr>
<tr>
<td></td>
<td>✓ 80nm</td>
</tr>
<tr>
<td>Infineon Technologies</td>
<td>✓ 120nm</td>
</tr>
<tr>
<td></td>
<td>✓ 90nm</td>
</tr>
<tr>
<td></td>
<td>✓ 65nm</td>
</tr>
<tr>
<td>Cypress Semiconductors</td>
<td>✓ 150nm</td>
</tr>
<tr>
<td>Atmel Corporation</td>
<td>✓ 350nm</td>
</tr>
<tr>
<td></td>
<td>✓ 130nm</td>
</tr>
<tr>
<td>AustriaMicroSystems</td>
<td>✓ 350nm</td>
</tr>
<tr>
<td></td>
<td>✓ 180nm</td>
</tr>
<tr>
<td>XFAB</td>
<td>✓ 350nm</td>
</tr>
<tr>
<td>Various Co-Operations</td>
<td>✓ Tektronix</td>
</tr>
</tbody>
</table>

![Toshiba Logo](image1.png)
![Infineon Logo](image2.png)
![Atmel Logo](image3.png)
![Cypress Logo](image4.png)
![AustriaMicroLogo](image5.png)

Developments underway (EKV3.1)

- Vertical Non-Uniform Doping.
- Accounting for Carrier Heating/Velocity Saturation in Induced Gate Noise.
- Mobility Effect to Improve Flexibility for Short-Channel Back-Bias
- Output Conductance Effects in Long Channel Halo/Pocket Implanted Devices
- Layout Dependent Stress Effects
- ...
Summary

- EKV3.0: a design-oriented, charge-based, compact model for Next Generation CMOS
 - Moderate and Weak Inversion, Analog/RF IC Design
 - Validated on Various CMOS Technologies to 65nm.
 - Used for Commercial IC Design.
 - Developed in Verilog-A
 - Verilog-A Code is Available to CAD Vendors.
 - Specific Simulators require Specific XML interface in ADMS
 - MOS Design Kits developed.
 - Implementation ongoing for:
 - ELDO, Smash, GoldenGate, …
 - Spectre, HSPICE, …
Thank you very much
for your time and attention