Small-signal Modelling of SOI-specific MOSFET Behaviours

D. Flandre

Microelectronics Laboratory (DICE), Research Center in Micro- and Nano-Scale Materials and Electronics Devices (CeRMIIN), Université catholique de Louvain (UCL)
Louvain-la-Neuve, Belgium
denis.flandre@uclouvain.be
“SOI-specific device behaviors: Challenges for compact modelling as well as parameter extraction and process engineering?”

1. Introduction
2. Specific phenomena
3. Recent scaling effect
4. Conclusion

Acknowledgements: UCL colleagues (M. Bawedin, D. Lederer, D. Levacq, V. Kilchytska, P. Simon, J.-P. Raskin…), IMEC, LETI (for advanced devices), SINANO (EU Network)…
1. Silicon-on-Insulator (SOI)

Partially Depleted vs. Fully Depleted

\[V_{th} \neq f(T_{BOX}, T_{Si}) \]

\[\Rightarrow \text{Easier to manufacture at present (IBM, AMD...)} \]

\[\Rightarrow \text{Less industrialized (only OKI 0.15 \(\mu \)m),} \]

\[\text{but higher promises (UTB, FinFET...)} \]
Basic I-V behavior

Partially Depleted vs. Fully Depleted

\[V_{th,front} \neq f(V_{Gb}) \]
But \(\sqrt{V_B} \)
As in bulk CMOS

\[V_{th,front} = f(V_{Gb}) \]
But linear and lower coupling
vs. Bulk and PD

In both cases, to 1st order, I-V curves as in bulk
⇒ Similar models but with adequate parameters:
BSIMSOI (+ EKV, PSP under development)!
Partially-depleted SOI MOSFET

Floating substrate node V_B

- normal operation: $V_B - V_S$
 $V_{ch} - V_B \rightarrow \gamma$ as in bulk

- far in saturation: I_{ii}
 $V_B > V_S \rightarrow V_{th} \downarrow, I_D \uparrow$

Impact Ionization, Gate tunneling \rightarrow Hole current in n-MOS

Also parasitic bipolar effect!
NMOS (W=10µ, L=0.25µ) @ VGS=1V

Trade area vs FBE, but care with tie efficiency, i.e. resistance!

PD SOI
BT = « Body tie »
P+ - substrate contact To source or ground
NMOS (W=10µ, L=0.25µ) @ VGS=1V

PD SOI : FB = Floating body
Beneficial for current increase, i.e. speed,
But dynamic couplings can be detrimental!
Delay Time between DC point measurements

What is DC?
Floating-body effects (FBE) compact modelling

All static and dynamic Body (B) couplings to G, S, D and Gnd
⇒ • History effects
• AC/RF effects on small-signal parameters

Introduced in major models: BSIMSOI ...
But requires careful parameter extraction!
Output conductance vs. Frequency

Wideband frequency measurements = solution for parameter extraction!
Output conductance vs. Frequency

Wideband = from DC to … > GHz

FB : \(f_{\text{pole}} < f_{\text{zero}} \)

BT : \(f_{\text{pole}} > f_{\text{zero}} \)
Output conductance : Modelling

\[g_d = g_{dsi} + g_{mbi} \text{Re} \left[\frac{v_{bi}}{v_{di}} \right] \]

\[\Rightarrow \frac{g_{bdsi} + j\omega C_{bdi}}{g_{bdi} + j\omega C_{bdi}} \]
Output conductance: Modelling

\[g_{bbi} = g_{jbsi} + g_{jbsi} + R_{be}^{-1} \]

\[C_{bbi} = C_{bbsi} + C_{bsdi} + C_{bgdi} \]

\[f_p = \frac{1}{2\pi} \frac{g_{bbi}}{C_{bbi}} \]

\[f_{0,kink} = \frac{1}{2\pi} \frac{\sqrt{g_{bbdi} g_{bbi}}}{\sqrt{C_{bbdi} C_{bbi}}} \]
Output conductance: Modelling with BSIM

Need for extraction: C_{gb}, g_{bs}, C_{bs}, g_{bd}, C_{bd}…!
Self-heating

Observations: large V_g and V_d → negative conductance
$I_{static} < I_{dynamic}$

Origin:
- buried oxide = thermal isolator
- power not dissipated in substrate
- device temperature \uparrow
- $\mu, I_D \downarrow$

important for device characterization, not for LVLP circuit operation

motivation to scale BOX to increase heat evacuation?
Frequency response of output conductance

Self-heating

Floating body (PD)

\[g(f) = g_{\text{intr}} + g_{\text{SH}}(f) + g_{\text{FB}}(f) \]

- **SH**
 - kink-effect
 - no SH
 - \(f \approx 10^5 - 10^7 \) Hz

- **kink**
 - no kink
 - \(f \approx 10^2 - 10^6 \) Hz

- **body C-coupled**
 - before kink
 - \(f \approx 10^2 - 10^8 \) Hz

III. Recent scaling effect

Length and BOX scaling

⇒ **SFBE:** Substrate Floating Body Effect on g_m and g_d

High frequency exp.

FD SOI MOSFET: $L_{\text{eff}}=0.16\mu$m, $W=16\times6.6\mu$m, $V_D=V_G=1V$

Substrate coupling?

Difference with DC is due to SH (*in part*)

Kilchytska et al, IEEE EDL, 2004
Experimental results: Low frequency

FD SOI MOSFET: $L=90\text{nm}$, $W=5\mu\text{m}$, $V_D=1.5\text{V}$, $V_G=0.5\text{V}$

Not compatible with SH!

Kilchytska et al, IEEE EDL, 2007
2D Atlas device simulations

\[G_{SD}, \mu \text{S}/\mu \text{m} \]

Conductance vs. Frequency, Hz

1st transition

2nd transition

3rd transition

Self-heating

L=1 µm, \(V_D=V_G=1 \text{V} \)

With substrate

1st and 3rd tr. still present for simulation without SH

Without substrate

1st and 3rd tr. disappear for simulation without substrate

Kilchytska et al, ESSDERC, 2002
2D Atlas simulations: Influence of substrate bias

Reduced Output Conductance

\[G_{SD} = G_{SD}(f) - G_{SD}(10 \text{ Hz}) \], \, \mu S/\mu m

Analogy with MOS capacitor

L=0.25\mu m; \, V_D=V_G=1V

accumulated BOX-substrate interface

inverted BOX-substrate interface

D. Flandre, Microelectronics Laboratory, CeRMiN

MOS-AK 14/09/2007
Analytical substrate model

1st tr. is due to inertia of minority carriers

3rd tr. is due to inertia of majority carriers

1st tr. in $G_{SD}(f)$

3rd tr. in $G_{SD}(f)$
Equivalent macro compact model

Fully-depleted

\[G_{SD} = g_{ds} + g_{SDsub} \]

\[g_{SDsub} = g_{mb} \cdot \frac{v_{BGS}}{v_{DS}} = (n_{FD} - 1) \cdot g_m \cdot \frac{v_{BGS}}{v_{DS}} \]

\[v_{BGS} \approx \frac{C_{BDG}}{C_{BDG} + C_{SBG} + C_{GBG} + C_{sub}} \cdot v_{DS} \]
Substrate Coupling: Scaling trend

Reduced G_{SD} (µS/µm)

Amplitudes of substrate-related transitions in G_{SD} increase very strongly with BOX thinning!!!

Kilchytska et al, ULIS 2007
Conclusions

SOI specific « floating body » phenomena =

* special concern for new devices / circuits
 - characterization methods (wideband)
 - modelling and simulation
 - process engineering / optimization

* deserves attention for correct
 - performance assessment
 - parameter extraction
 - application (avoid detrimental effects, exploit benefits, opportunities)