

ASCENT Overview

MOS-AK Workshop, Infineon, Munich, 13th March 2018

European Nanoelectronics Infrastructure Access Paul Roseingrave

The Challenge

Cost/performance returns by scaling are diminishing

The Economist

Technology Quarterly March 12, 2016

Cost to achieve tape out on new nodes is increasing

This can't go on Design cost by chip component size in nm, \$m FORECAST 600 400 65 45 28 20 16 10 7 5 Source: IB Consulting

The infrastructure

Unique opportunity:

ASCENT combines
Tyndall, imec and
CEA-Leti's
nanofabrication &
electrical
characterisation
capabilities

into a single research infrastructure

and makes it accessible to all

ASCENT will:

- Leverage Europe's Unique advantage in nanofabrication to strengthen modeling and characterisation research community
- Accelerate development of advanced models at scales of 14nm and below
- Provide characterisation community with access to advanced test chips, flexible fabrication and advanced test and characterisation equipment
- Make project outputs available and easily accessible to nanoelectronics research community

ASCENT offers simplified access to advanced technology and research infrastructure

Access Provided

State-of-the-art 14 nm bulk FDSOI CMOS

Advanced transistor and interconnect test structures

Electrical & nanocharacterisation platforms Fabrication facilities for nanowires & 2D materials

Advanced nanowire and nano- electrode test structures

Electrical & nanocharacterisation platforms State-of-the-art 14 nm FinFET CMOS

Advanced transistor and interconnect test structures

Electrical & nanocharacterisation platforms

www.ascent.network

340 members across 40 countries

- Test wafer/chips
- Electrical Characterisation

- Physical Characterisation
- Nanoscale non-standard fabrication

14nm technology data (Virtual Access)
 www.ascent.network

FinFET 14/28nm Material for Device Analysis

ımec

- Test chips/wafers
 - 300mm wafers with Bulk FinFET devices (14nm)
 - 300mm wafers with Planar Metal Gate devices (28nm
- Digital and Analog/RF existing test chips
- Complete suite of test structures for Reliability/ESD/Matching/Local Layout effects/...
- Standard devices up to circuit level [Ring-Oscillators, ...]
- State-of-the-art bulk FinFET device baseline

FDSOI 14/28nm Material for Device Analysis

- 300mm wafers with planar FDSOI and Nanowire devices
- SPICE models and model cards for digital: target and preliminary
 - 14nm FDSOI
 - 10nm FDSOI
 - 10nm FFSOI
- TCAD decks
 - FDSOI MOSFET
 - Trigate SOI Nanowire
 - GAA Nanowire MOSFET (mainly electrostatics)
- To come in the near future:
 - Spice model for Stacked NWs (7nm tech. node)

Electrical Characterisation

- >500 m² of test labs, ~ 25 semiauto/manual 300mm probers
- Statistical data treatment in JMP
- Fully and Semi-automatic 300mm parametric testers
- Temperature range for test on wafers 77/10K → high T
- Fast Pulse testing, Self-Heating characterization
- HF tests up to 50 GHz
- Noise measurements
- Reliability tests: hot carriers, TDDB, charge pumping, ...
- High power tests (10kV, > 100A) on 300mm prober
- Electrostatic discharge LAB

Electrical Characterisation Labs

Open Access Test Lab	Wide range of test equipment for device and wafer testing e.g.: impedance, capacitance, voltage, current, spectrum analysers,
Nanoscale Test Lab	Variable Temperature, Micromanipulator Probe Stations
Reliability Test Lab	Wide range of test equipment for packaged devices

Physical Characterisation

- Atomic Force Microscopy
 - Dimension AFM Icon/Fast Scan Bruker working under glovebox (O2, H2O < 1 ppm)
- High Resolution Transmission Electron Microscopy
 - FEI TECNAI G2 F 20
 - FEI TITAN THEMIS 80-200 kV
- ToF-SIMS
 - ION TOF TOF SIMS 5
- Atom Probe Tomography
 - CAMECA FlexTAP Atom probe
- XRD (X-ray Diffraction)
 - Diffractometer Smartlab RIGAKU 5 circles
- XPS (X-ray Photoelectron Spectroscopy)
 - Spectrometer/microscope PHI VERSA PROBE II
- Ellipsometer
 - Ultraviolet-visible ellipsometer HORIBA JOBIN YVON UVISEL

Physical Characterisation Labs

Electron Microscopy Facility	High Resolution TEM, SEM and FIB, EDAX capability
Nanoscale Characterisation	AFM, SEM and electrical characterisation
Optical Spectroscopy Labs	Raman & Optical Spectroscopy, fluorescence microscopy
Magnetic Characterisation	SQUID magnetometer for nano magnetic materials
Package Characterisation	Scanning Acoustic microscope, X-ray analysis

Nanoscale fabrication

Range of cleanrooms designed for flexible process & product development

- Silicon MOS Fabrication
- MEMS Fabrication
- Compound Semiconductor Fabrication
- Photonics Fab Training Facility
- e-beam Lithography
- Non-standard nano-processing

Focussed Ion Beam (FIB)

Complete nanotechnology lab in one tool

- High resolution pole piece point-topoint resolution of 0.21 nm
- EDS, Oxford instruments, INCA 250, site-lock drift correction system for high resolution elemental mapping
- In-situ STM-TEM holders, high temperature TEM holders
- STEM mode with BF and HAADF detectors (0.8 nm resolution)
- Oxford Instruments X-MAX 80 for high productivity EDS analysis
- Cryo preparation for liquid and gellike materials

Nanoscale Technology Data

- FinFET Characterisation Data (imec)
 - FinFET and GAA test chip documentation and DATA (14nm)
 - Documentation of process assumptions for the test chips
 - Inventory of test structure types available on the test chips
 - Access to test structures data
 - PLANAR test chip documentation and DATA (28nm)
 - Documentation of process assumptions for the test chips
 - Inventory of test structure types available on the test chips
 - Access to test structures data
- FDSOI: PDK for Full custom IC design
 - 14nm planar FDSOI technology
 - 10nm planar FDSOI technology (preliminary)

Virtual Access Data available

HOME ► MY COURSES ► ASCENT ► VA DATA

imec bulk FinFET data

- Access to bulk finFET and GAA_SiNW data
 - Integrated dual WFM CMOS
 - LG range 24nm → 90nm within pitch and long channel devices
 - nFIN from 2 to 22
- Room T available
 - 50°C or higher T next
 - Low T can be considered
- DOE for contact, layout effects,...

imec bulk FinFET data

- Access to raw data and extracted FoM's
 - Threshold Voltage, Mismatch
 - DC metrics and ID-VD, ID-VG characteristics
 - FEOL/BEOL R/C and Ring-Oscillator circuits
- Full sweep data in VA
 - Covers range of VG/VD and LG/nFin
- Analog FoM, Reliability testing, ESD,...
- Available for subsequent model validation

30 Virtual Access Registered Users

New initiative: PhD Accelerator Prog.

imec

Reliability and failure mechanisms in advanced CMOS technologies

20th-23rd November 2017

6 places

Outcome: Very successful + led to a number of enquiries

CEA Leti

Reliability & Defects in Advanced Technologies...from Theory to practice 5th-7th March 2018 6 places

Outcome:

Tyndall National Institute

Hands on nanoelectronics fabrication & characterisation 24th-26th April 2018 6 places

How to engage

Please join us in this exciting opportunity for nanoelectronics research Any enquiries? Email Paul - paul.roseingrave@tyndall.ie

Sign up:

www.ascent.network

Phone: +353-21-2346268

Sign up and find out more online

Sign-up Form

Please fill your details	below. By signing up, you	become a member of the ASCENT
network. Members will		by e-mail on ASCENT technologies,

ourname*	
our e-mail address *	
omments	
	1.
ow did you hear about	
CENT?	

ASCENT is funded by the European Commission under H2020 Research Infrastructures Programme Grant agreement 654384

