

Extraction of a Scalable Electrical Model for a HV (600/800 V) MOS Transistor

Lorenzo Labate - Simona Cozzi - Roberto Stella

Technology R&D – Smart Power & High Voltage Competence Center Device Characterization & Modeling Group

MOS-AK Workshop Paris April 7th, 2011

Outlines

- Introduction
- HV MOS Transistor description
- Model extraction strategy description
- Results
- Conclusions

Outlines

Introduction

- HY MOS Transistor description
- Model extraction strategy description
- Results
- Conclusions

Introduction

- 600V/800V MOS are commonly present in several applications of our daily life:
 - Low consumption bulbs
 - Devices connected to the power line which use:
 - Switching regulators
 - DC/DC converters
 - Motor drivers
 - Automotive
 - Etc...

Electric Motors & Motor Drivers

Automotive Applications

Outlines

- Introduction
- HV MOS Transistor description
- Model extraction strategy description
- Results
- Conclusions

HV MOS Transistors Description

- Level Shifter (Mickey Mouse):
 - Ears are dedicated MOS used to bring in/out electrical signals
 - Its perimeter is also an active device
 - Isolated pocket which can contain low/medium voltage devices

Realized in a 0.35μm smart power technology,
 BCD6SOFFLINE, able to integrate 3.3V/5V CMOS,
 BJTs, passives with MV MOS and 600/800 V MOS.

Model Purpose

Since the perimeter transistor of the floating pocket is used to

separate high voltage world from low voltage one, its shape is not defined a priori, but it is built up to contain low voltage devices

GOAL:

Extraction of fully scalable models, able to take into account:

Linear width

Number of curves

To describe perimeter devices behavior

Number of Ears -

To describe the Ear electrical behavior

Available Devices for Model Extraction

Round MOS

Modeling Strategy – Starting Point

Step 1. Round MOS Modeling:

• W≈1.5mm

- Extraction of Round MOS model:
 - Intrinsic MOS, Rdrift, parasitic elements
- Extracted parameters have been adopted as initial values for subsequent models

Modeling Strategy – Step 2

Step 2. Doubling intrinsic MOS

- Insertion of 2 MOS into the model card:
 - To describe straight transistors
 Parameter is linear width
 - To describe curved MOS
 Parameter is number of curves
 (a curve has a fixed curvilinear width)

Linear width
Curvilinear width

Modeling Strategy – Step 3

Step 3. Ears Modeling

- Extraction and optimization of intrinsic MOS for curvilinear width
 - Number of curve (NC) = 6
 - Linear width negligible

Modeling Strategy – Step 4

Step 4. Mickey Mouse perimeter modeling

- Extraction and optimization of intrinsic MOS for straight MOS and ΔW
 - Number of curve (NC) = 2
 - Very large linear width

Cross Section

Outlines

- Introduction
- noisqinaseb noisismi solu VII I
- Model extraction strategy description

Results

- Conclusions

Round MOS Model Accuracy @ 25°C

Round MOS Model Accuracy @ High Voltage

VG values: 1V, 2V, 2.5V

Pulse width: 100ns

_____ Exp. Data ----- Sim. Data

Round MOS Model Accuracy vs Temperature

Mickey Mouse Model Scalability – linear region

Mickey Mouse Model Scalability – output char.

Parasitic Capacitances

Gate-Drain Capacitance Affected by Resurf

$$C_{DG} = C_{DGL} \cdot f + C_{DGH} \cdot (1 - f) + C_{par}$$

$$\begin{split} C_{DGL} &= \frac{C_1}{\left\{1 + K1 \cdot \left[well _ \operatorname{sgn} \cdot x + 0.5 \cdot \left(-well _ \operatorname{sgn} \cdot x - VFB1 + \sqrt{(well _ \operatorname{sgn} \cdot x + VFB1)^2 + EPS1^2}\right)\right]\right\}^{MJK1}} \\ C_{DGH} &= \frac{C_2}{\left\{1 + K2 \cdot \left[well _ \operatorname{sgn} \cdot x + 0.5 \cdot \left(-well _ \operatorname{sgn} \cdot x - VFB2 + \sqrt{(well _ \operatorname{sgn} \cdot x + VFB2)^2 + EPS2^2}\right)\right]\right\}^{MJK2}} \end{split}$$

$$f = 0.5 \cdot \left[\left(1 - \frac{well _ sgn \cdot x - VSTEP}{\left(\left(abs(well _ sgn \cdot x - VSTEP)^2 \right)^N + \left(eps^2 \right)^N \right)^{\frac{1}{2N}}} \right) \right]$$

Junction Capacitance Affected by Resurf

$$C_{JTOT} = C_{J1} + C_{J2}$$

$$C_{J1} = \left[\frac{C_{J01}}{\left(1 + \frac{X}{V_{J1}}\right)^{M_{J1}}} + CK_1 \right] \cdot 0.5 \cdot \left[\left(1 - \frac{X - V_P}{\left(abs(X - V_P)^{2N} + eps^{2N}\right)^{\frac{1}{2N}}}\right) \right]$$

$$C_{J2} = \left[\frac{C_{J02}}{\left(1 + \frac{X}{V_{J2}}\right)^{M_{J2}}} + CK_2 \right] \cdot 0.5 \cdot \left[\left(1 + \frac{X - V_P}{\left(abs(X - V_P)^{2N} + eps^{2N}\right)^{\frac{1}{2N}}}\right) \right]$$

Parasitic BJTs

Exp. Data

Outlines

- Introduction
- noisqinaseb noisismi solu VII I
- Model extraction strategy description
- Results

Conclusions

Conclusions

- Two models have been extracted in order to describe the whole level shifter:
 - Mickey Mouse perimeter
 - Mickey Mouse Ears
- Models are fully scalable with linear W, number of curves and number of *Ears*
- Models fit the whole temperature range: -40 / 175 °C.
- Models fully describe parasitic effects
- The highest flexibility for designers is guaranteed

Acknowledgments

- We want to thank gentlemen Designers, for support and useful discussions:
 - A. Morello
- We want to thank gentlemen Technology Developers:
 - R. Depetro
- We want to thank ours responsible, who always support us:
 - E. Novarini and R. Stella

End of Presentation

Thank you for your attention