Investigation of De-embedding procedures up to 110GHz

J.BAZZI*, C. RAYA, A.CURUTCHET*, F.POURCHON#, N.DERRIER#, D.CELI#, T.ZIMMER*

* jad.bazzi@ims-bordeaux.fr
* IMS Laboratory
STMicroelectronics

A European Project supported within the Seventh Framework Programme for Research and Technological Development
Outline

● Introduction
● Calibration
● De-embedding steps
 ● OPEN-SHORT
 ● 3 steps
 ● 4 steps
 ● 5 steps
 ● 6 steps
● Two-step de-embedding
● Conclusion
Introduction

● Deembedding importance:
 - For process engineers (technology performance f_T, f_{max})
 - Highly important for compact device modeling
 - S parameter perfectly corrected

● Main issues
 - What is an accurate deembedding technique?
Outline

- Introduction
- Calibration
- De-embedding steps
 - OPEN-SHORT
 - 3 steps
 - 4 steps
 - 5 steps
 - 6 steps
- Two-step de-embedding
- Conclusion
Calibration

- Takes into account parasitic between VNA and Probe tips
- After calibration the reference planes are at the probe tips

Source: IBM IEEE Spectrum
De-embedding

- Retrieve intrinsic device performance → de-embedding
- How?!!

Reference plane after calibration
Reference plane after de-embedding

Source: IBM IEEE Spectrum
Outline

● Introduction

● De-embedding

● De-embedding steps
 ● OPEN-SHORT
 ● 3 steps
 ● 4 steps
 ● 5 steps
 ● 6 steps

● Two-step de-embedding

● Conclusion
De-embedding steps

- **Open-Short**
 - *Koolen, Bipolar Circuits and Technology Meeting, Sep. 1991*

- **3 Steps**

- **4 Steps**
De-embedding steps

● 5 Steps
Probes-Short Pad-Open Pad-Short Line Complete-Short

* F. Pourchon et al, BCTM 08, Invited talk

● 6 Steps
Probes-Short Pad-Open Pad-Short Line Complete-Short

* C. Raya et al, HICUM Workshop 08
De-embedding Steps

- 5 de-embedding steps

Source: IBM IEEE Spectrum
De-embedded equivalent circuit (1): Probe Short
Results

• Probe short:
 – short circuit for the probes
 – Correct the probe contact resistance

Attention: probe contact problem at Port 1
Manual probing !!!
De-embedded equivalent circuit (2): Pad Open
De-embedded equivalent circuit (2): Pad Open

- Pad capacitance

![Graph showing capacitance vs. frequency for C1 and C2]

- Equivalent circuit (2)

![Diagram of equivalent circuit with components C1PO and C2PO]
De-embedded equivalent circuit (3): Pad Short
De-embedded equivalent circuit (3): Pad Short

- Pad short:
 - short circuit at the edge of the signal pad.
De-embedded equivalent circuit (4): Line scalable
De-embedded equivalent circuit (4): Line scalable

- First: measure and de-embed a long line:
Re-dimensioning the line

\[T = a + d \quad K = a - d \quad \Delta = K^2 + 4bc \quad \delta = \sqrt{\Delta} \quad \text{si} \ \Delta \geq 0 \quad \text{ou} \quad \delta = i\sqrt{\Delta} \quad \text{si} \ \Delta < 0 \quad n = \frac{L}{L_{\text{line}}}
\]

\[
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
= \frac{1}{\delta}
\begin{bmatrix}
\frac{(\delta+K)(T+\delta)^p + (\delta-K)(T-\delta)^p}{2^{n+1}} \\
\frac{(T+\delta)^p - (T-\delta)^p}{2^n} \\
\frac{(\delta-K)(T+\delta)^p + (\delta+K)(T-\delta)^p}{2^{n+1}}
\end{bmatrix}
\]

\text{Phase (degree)}
\text{Frequency (Hz)}
\text{S12} \quad \text{S21} \quad \text{S12_Shortline} \quad \text{S21_Shortline}
De-embedded equivalent circuit (5): Complete short
De-embedded equivalent circuit (5): Complete short

Z_B: Base impedance
Z_C: Collector impedance
Z_E: Emitter impedance
The three shorts:

- **Probes-Short**
- **Pad-Short**
- **Complete Short**

The graph shows the resistance (Ohm) vs. frequency (Hz) for three different types of shorts: `comple_short`, `probe_short`, and `pad_short`. The x-axis represents the frequency in Hz ranging from 1G to 100G, while the y-axis represents the resistance in Ohm ranging from -0.6 to 1.0.
De-embedded equivalent circuit (6): Capacitances

- 6 de-embedding steps

Specific open could be used only between port 1 & 2 (C_{PBC} capacitance)
De-embedded equivalent circuit (6): Capacitances

Symmetrical test structures

\[C_{BE}(2.B) \parallel C_{BE}(1.B) \]

\[C_{backend}(1.B) \approx C_{BE}(2.B) - C_{BE}(1.B) \]
Comparison (Open Vs 6 steps):

BiCMOS9MW CBEBC $W_E=0.3\mu m$, $L_E=14.92\mu m$ et $L_E=3.7\mu m$

$V_{BE}=-0.5V$

f_T extracted from measurements @10GHz
Discussion

- Good correction for 6 steps
- Different type of dummies → processing is more complex
- More de-embedding dummies for one DUT
 - Large set of devices end by doubling or tripling the number of dummies → Si area

6 steps very complex → Specified approach, Two steps

![Diagram of R, L circuit with symbols for Probes-Short, Pad-Open, Pad-Short, Line, Complete Short]
Two-Step de-embedding

- Pad Open

\[
\begin{pmatrix}
i_1 \\
i_2
\end{pmatrix} =
\begin{pmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix}
\]

\[C_1 = \left(\frac{1}{2\pi f} \right) \text{Im}(Y_{11})\]

\[C_2 = \left(\frac{1}{2\pi f} \right) \text{Im}(Y_{22})\]
Two-Step de-embedding

- Complete-Short

\[
\begin{bmatrix}
 v_1 \\
 v_2
\end{bmatrix} =
\begin{bmatrix}
 Z_{11} & Z_{12} \\
 Z_{21} & Z_{22}
\end{bmatrix}
\begin{bmatrix}
 i_1 \\
 i_2
\end{bmatrix}
\]

\[
R_1 = \text{Re}(Z_{11}) - \text{Re}(Z_{12})
\]

\[
R_2 = \text{Re}(Z_{22}) - \text{Re}(Z_{21})
\]

\[
R_3 = \left(\text{Re}(Z_{12}) - \text{Re}(Z_{21})\right)/2
\]
Comparison:

- Validation of the Two-steps method

CBEBC $L_E=5\mu m$, $V_{BE}=0.9V$, $V_{CB}=0V$
Comparison:

- Validation of the Two-steps method

CBEBC \(L_E=5 \mu m, V_{BE}=0.9V, V_{CB}=0V \)
Conclusion

- Different de-embedding methods were presented
- A scalable solution for deembedding is the key
- De-embedding structures use a lot of Si surface
- Pad open and complete short may be sufficient
Acknowledgements

- This work is part of the:
 - Dotfive project supported by the European Commission through the Seventh Framework Programme for Research and Technological Development
- Acknowledgements also to the Medea+ “Siam” project
- We want to thank F. Pourchon, D. Celi and N. Derrier from ST and C. Raya from XMOD Technologies for helpful discussions.
- A “grand merci” to Magali for efficient support and the very accurate measurements.
Thanks For Your attention