Modeling Standardization:
Enabling the worldwide design community
Why compact model standardization?

Model selection
Model standardization and QA
Continuous improvement
Verilog-A
Other Standards
Summary
Why compact model standardization

Look at the Apple I-phone for a view of the shape of our industry

- Most chips are *not* designed by Apple
- Chips from a dozen different companies
- Apple designed chips are not fabbed by Apple
- Why?
 - Chip fabs are very expensive to build
 - And to run
 - There are huge economies of scale
- Most designers use commercial (not inhouse) design tools
- Designers, EDA vendors and fabs need common models to communicate
- The CMC was formed in 1995 as a collaboration of foundries, fabless companies and EDA vendors

Source: Chipworks.com webpage
The CMC Mission

- **Charter**: To promote the international, nonexclusive standardization of compact model formulations and the model interfaces.

- **Vision**: Standardized compact models for all major technologies so that customer communication and efficiency can be enhanced. Standard interfaces so that models can be tested faster and implemented easier. Better compact models for the latest technologies, allowing leading edge design development cycles to shorten.

- **Strategy**: Examine, promote and standardize compact modeling efforts based upon business needs. Encourage developers to dwell on current and near-term problems that will advance compact modeling. Provide industry resources for monitoring/mentoring compact model development. Provide a standardization process to the compact model developers.
What the CMC does

- Standardize models existing transistor models
 - Competitive selection
 - Rigorous testing
 - Version Control
 - Continuous improvement
 - CMC funding for university support

- Create standard models for passives
 - Created and maintained by industry volunteers

- Standard modeling interfaces
 - Verilog-A
 - TMI-2 API
 - Proximity effect instance parameters
 - Standard Spice Language
 - Statistical modeling standard

Source: Chipworks.com webpage
Outline

Why compact model standardization?

Model selection

Model standardization and QA

Continuous improvement

Verilog-A

Other modelling standards

Summary
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?
- Current CMC Standards
 - 1996
 - BSIM3

CMOS logic design, .25μ
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?

Current CMC Standards
- 1996 BSIM3
- 2000 BSIM4

Short channel MOSFET
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?
- Current CMC Standards
 - 1996 BSIM3
 - 2000 BSIM4
 - 2002 BSIMSOI

SOI MOSFET for CMOS logic
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?

Current CMC Standards
- 1996 BSIM3
- 2000 BSIM4
- 2002 BSIMSOI
- 2004 MEXTRAM
- 2004 HICUM

Bipolar, include SiGe HBT for RF
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?

Current CMC Standards
- 1996 BSIM3
- 2000 BSIM4
- 2002 BSIMSOI
- 2004 MEXTRAM
- 2004 HICUM
- 2005 R2_CMC

Poly & Metal resistors
(2 terminal)
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?

Current CMC Standards
- 1996 BSIM3
- 2000 BSIM4
- 2002 BSIMSOI
- 2004 MEXTRAM
- 2004 HICUM
- 2005 R2_CMC
- 2006 PSP

MOSFET model for analog especially operating thru Vds=0
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?

Current CMC Standards
- 1996 BSIM3
- 2000 BSIM4
- 2002 BSIMSOI
- 2004 MEXTRAM
- 2004 HICUM
- 2005 R2_CMC
- 2006 PSP
- 2007 HiSIM_HV

High voltage MOSFET such as LDMOS
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?

Current CMC Standards
- 1996 BSIM3
- 2000 BSIM4
- 2002 BSIMSOI
- 2004 MEXTRAM
- 2004 HICUM
- 2005 R2_CMC
- 2006 PSP
- 2007 HiSIM_HV
- 2007 R3_CMC

Defused Resistor
(3 terminal)
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?

Current CMC Standards
- 1996: BSIM3
- 2000: BSIM4
- 2002: BSIMSOI
- 2004: MEXTRAM
- 2004: HICUM
- 2005: R2_CMC
- 2006: PSP
- 2007: HiSIM_HV
- 2007: R3_CMC
- 2008: MOSVAR

MOS Varactor
Select device types to support with standard models

- Is there a need for a (new) standard model?
- Is there potential financial support for a standard model?
- Do models of sufficient quality exist?

Current CMC Standards
- 1996 BSIM3
- 2000 BSIM4
- 2002 BSIMSOI
- 2004 MEXTRAM
- 2004 HICUM
- 2005 R2_CMC
- 2006 PSP
- 2007 HiSIM_HV
- 2007 R3_CMC
- 2008 MOSVAR
- 2009 Diode_CMC

Designed Diode
CMC is currently working on standards for

- Partially depleted SOI MOSFET for analog application including Vds=0
- Dynamic depletion SOI MOSFET
- Multigate MOSFET
- Fully Depleted (ultra-thin) MOSFET
- GaN HEMT
Outline

Why compact model standardization?
Model selection

Model standardization and QA
Continuous improvement
Verilog-A
Other modelling standards
Summary
Four Phase Standardization Process

- Phase I—Search and review of available models
- Phase II—Developer and sponsor(s) fit to data and complete physicality tests
- Phase III—CMC test models, using model cards from Phase II and/or own data
- Models passing Phase III will eventually be CMC standards
- Phase IV—Models readied for release
Phase I—Search and review of available models

- Model must appear able to meet all requirements within a reasonable time
 - Including support and IP requirements
- Model must attract at least 1 CMC member as a sponsor
Phase II—Developer and sponsor fit data and complete physicality tests

- Model must fit the data adequately
- Model must pass physicality tests
- Phase II produces “Frozen code & Model cards”

Overlay: PMOS IV-Sweep 0315 vs 0202

- W/L = 10um/0.08um
- Id-Vg-Vb@Vd=1V
- Log(Id)-Vg-Vb@Vd=1V,0.05V
- Id-Vd-Vg@Vb=0V
- Id-Vd-Vg@Vb=-0.75V

Si data
- 0315 FML
- 0202 HU
Phase III—CMC test models, using model cards from Phase II and/or own data

- Model must be judged by CMC members to be significant improvement over what is publically available
- Ideally one but sometimes two models
- Models passing Phase III will eventually be CMC standards

PSP runtime

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Number of transistors</th>
<th>BSIM4.5</th>
<th>PSP102.1 JUNCAP</th>
<th>PSP102.1 JUNCAP Express</th>
<th>CPU Time (s)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complt</td>
<td>17</td>
<td>3.88</td>
<td>6.37</td>
<td>5.04</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fadd2</td>
<td>288</td>
<td>4.4</td>
<td>6.67</td>
<td>4.7</td>
<td>1.06918118</td>
<td></td>
</tr>
<tr>
<td>Inv</td>
<td>10</td>
<td>4.46</td>
<td>7.05</td>
<td>5.51</td>
<td>1.23942009</td>
<td></td>
</tr>
<tr>
<td>Nand1</td>
<td>44</td>
<td>2.44</td>
<td>2.82</td>
<td>2.29</td>
<td>0.93862459</td>
<td></td>
</tr>
<tr>
<td>Nand3</td>
<td>132</td>
<td>6.06</td>
<td>5.94</td>
<td>5.16</td>
<td>0.85148514</td>
<td></td>
</tr>
<tr>
<td>Nor1</td>
<td>44</td>
<td>2.6</td>
<td>2.93</td>
<td>2.19</td>
<td>0.84207695</td>
<td></td>
</tr>
<tr>
<td>Nor3</td>
<td>132</td>
<td>20.67</td>
<td>18.58</td>
<td>15.18</td>
<td>0.72735947</td>
<td></td>
</tr>
<tr>
<td>Ring3</td>
<td>66</td>
<td>2.62</td>
<td>3.05</td>
<td>2.44</td>
<td>0.85624027</td>
<td></td>
</tr>
<tr>
<td>Ringjc</td>
<td>42</td>
<td>10.31</td>
<td>10.18</td>
<td>8.46</td>
<td>0.82262356</td>
<td></td>
</tr>
<tr>
<td>Rrel1</td>
<td>36</td>
<td>5.65</td>
<td>7.98</td>
<td>6.47</td>
<td>1.14813574</td>
<td></td>
</tr>
<tr>
<td>Sram</td>
<td>1008</td>
<td>301.02</td>
<td>366.42</td>
<td>290.71</td>
<td>0.96574958</td>
<td></td>
</tr>
<tr>
<td>Ring</td>
<td>36</td>
<td>12.25</td>
<td>15.45</td>
<td>11.19</td>
<td>0.91346938</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Global CPU time: BSIM4.5, PSP102.1 JUNCAP, PSP102.1 JUNCAP express

Convention: Green < 1.1 < Orange < 1.3 < Red

I_gs = 0
I_gd = 0
I_gate,_a = 0
I_gate,_d = 0
only I_gb

IGB current for VDS=0 and no GIDL current

should be zero for V_gb = V_sb = 0; should only depend on V_gb, not V_sb
Phase IV—Models readied for release

- Fix problems found in phase II & III
- Model must fully meet requirement
- 2/3 yes vote
- Negative comments resolved (Resolved means)
 - explained to the satisfaction of the commenter
 - Or Fixed
 - Or Set aside by the chairman
- If “substantial” fixing is require a new ballot will be required
Outline

Why compact model standardization?
Model selection
Model standardization and QA

Continuous improvement
Verilog-A
Other modelling standards
Summary
CMC models do not remain static

- Most enhancements are requested by members but they can also come from the developer
- CMC decides which enhancements they want to pursue
- CMC members test enhancements before they are released as a standard
University

Study physics, CMC data, create beta code

Proposal

Data & Suggestions

Evaluate for own technology

CMC Members

CMC
University

Release new Standard Code

Accept new Code

Test Results

CMC Members
Why compact model standardization?
Model selection
Model standardization and QA
Continuous improvement

Verilog-A

Other modelling standards

Summary
What & Why of Verilog-A for compact models

- Verilog-A is a part of verilog-AMS, a high level description language for analog and mixed signal circuits

- For standard compact models it has two compelling advantages
 - All simulators now support Verilog-A so collaborative model development and testing is simplified
 - All the derivatives are created automatically so there are no derivative errors in the code

From the Accellera group website
Collaborative model development

University

Release new Standard Code

Accept new Code

CMC

Test Results

Compile for in house simulator

Work with EDA vendor for test simulator

Skip testing because no simulator

Build into product simulator

Integrate manufacture

Foundry

Fabless

EDA vendor

© 2009 IBM Corporation
Collaborative model development

University

Release new Standard Code

Accept new Code

CMC

Test Results

Test Verilog-A

Test Verilog-A

Test Verilog-A

Build into product simulator

Integrated manufacture

Foundry

Fabless

EDA vendor

© 2009 IBM Corporation
Outline

Why compact model standardization?
Model selection
Model standardization and QA
Continuous improvement
Verilog-A

Other modelling standards
Summary
Standard Spice Language

- Defining a standard netlist and model file language
- List of 35 requirements was collected from CMC membership
- Currently Drafting a language document
- Goal is to incorporate functionality of existing languages in a standard way (unless it is not a good idea)
Some features

- Based on Berkeley-Spectre language
- Formal grammar
- Case-sensitive
- No positional arguments (except terminals)
- No key letters to identify components
- Conditional instantiation
- Formally defined hierarchy and scoping rules
- Method to combine different design kits in the same netlist
- Support for statistical variation
- Should play together well with Verilog A
Statistical Modeling Recommended Practice

- Define physical variation sources and their significance (MOS)
- Deliverables: Categorize sources & physical effects per category to be modeled.

- Modeling the different variation sources
- Deliverables: Standardize the communication of the different variability sources.
Common Model-Simulator API

- Allows for fast simulation of extra physical effects through compiled C code
- A common API makes it easier to interface to CMC standard models.
- One API to code and support … instead of multiple API’s
- Model extensions much easier to implement
- Future enhancement to support Aging simulations
Outline

Why compact model standardization?
Model selection
Model standardization and QA
Continuous improvement
Verilog-A
Other modelling standards

Summary
Summary

- The CMC enables the fabless—foundry semiconductor business model by
- Providing high quality device models
- Providing a forum and mechanism to keep them current to industry needs
- Standardizing model interfaces and usage

- The CMC is a member driven organization open to any company in the semiconductor business