Progress in Applying On-Wafer Calibration Techniques for Advanced High-Speed Silicon Technologies

Andrej Rumiantsev1), 3), Franck Pourchon2)

1) Cascade Microtech Dresden GmbH, Suss-Strasse, 1, D-01561 Sacka, Germany

2) STMicroelectronics, 850 rue Jean Monnet, F-38926 Crolles, France.

3) Dresden University of Technology, CEDIC, D-01062 Dresden, Germany
Outline

- Motivation
- On-Wafer Calibration
- Design of Calibration Standards
- Comparison Results
- Conclusion
Transistor Measurement Challenges

- A transistor cannot be contacted (probed) directly:
 - Contact pads and interconnects are required
- Increase of measurement and operation frequency:
 - Impact of contact pads parasitics significantly increases

How to get rid of parasitics?
Conventional Method: Pad De-Embedding

- Complexity increases with an increase of frequency

One-Step (few GHz)

Five-Steps (<50GHz)

Alternative methods are required

Outline

- Motivation
- On-Wafer Calibration
- Design of Calibration Standards
- Comparison Results
- Conclusion
On-Wafer Calibration Goal

- To move the measurement reference plane close to the DUT terminals in just one step
Suitable Calibration Methods

- Multiline TRL:
 - Developed at NIST in early 90s
 - Original application: semi-insulating wafers (GaAs)
 - End of 90s: application techniques for Si

- LRM+:
 - First application: SiGe:C
 - Comparison vs. multiline TRL: GaAs, bulk Si
Outline

- Motivation
- On-Wafer Calibration
- Design of Calibration Standards
- Comparison Results
- Conclusion
Design of Calibration Standards

- Calibration reference plane tradeoff:
 - As close as possible to the DUT terminals
 - Locate standards as far as possible from Si (top metal)
Design of Calibration Standards: Load

mTRL Reference Plane

2 N+ salicided 50Ω Poly resistors
Characteristic Impedance of CPW

- **Lumped Load Method:**
 - Requires resistor (Load) embedded in the CPW launch
 - Load resistance R can easily be measured
 - Difficulties:
 - Impact of Load reactance can decrease accuracy

- **Calibration Comparison Method:**
 - Requires initial reference calibration (probe tip, on ISS)
 - Z_0 of the test line is extracted from the second-tier cal
 - Difficulties:
 - Accurate reference calibration at mm-wave frequencies
 - Impact of the Si line launch can decrease accuracy
Standards: Measurement of Line Z_0

Lumped load method provided sufficient accuracy
Two-step de-embedding provided comparable results
Outline

- Motivation
- On-Wafer Calibration
- Design of Calibration Standards
- Comparison Results
- Conclusion
Calibration Verification Results

- Four calibration conditions:
 - Probe Tip
 - Probe Tip + De-embedding (conventional)
 - On-wafer mTRL, reference plane M6
 - On-wafer mTRL, reference plane M1

- Three elements: DUT Open, DUT Short, DUT
Capacitance of the Open Dummy

Equivalent capacitances decreased down to < 1fF
Inductance of the Short Dummy

Equivalent inductance decreased down to < 5 pH
Comparable results for CBC
Comparison for DUT Parameters: f_T and g_m

On-wafer calibration provided close to ideal results
Outline

- Motivation
- On-Wafer Calibration
- Design of Calibration Standards
- Comparison Results
- Conclusion
Conclusion

- Compared on-wafer calibration methods to the conventional pad de-embedding approach for an advanced BiCMOS process
- The proposed approach calibrates out the major part of the backend parasitics
- Possible distributed behavior of backend parasitics has no impact on calibration accuracy
- On-wafer calibrating is the most suitable approach for accurate characterization of high-speed silicon-based transistors
Acknowledgement

P. Chevalier, N. Derrier from STMicroelectronics (France),

P. Sakalas from Dresden University of Technology (Germany)

and

Agilent EESof division (USA)