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PowerAmerica is a U.S. Department of Energy A

WBG Semiconductor Manufacturing Institute POWERAMERICA

* The U.S Department of Energy launched the PowerAmerica
Institute to Accelerate Adoption of Wide Band Gap (WBG)
power electronics.

« PowerAmerica started operations in 2015 with $140M funds
over 5 years, and is managed by North Carolina State
University in Raleigh, NC USA.

« PowerAmerica addresses gaps in WBG power technology to
enable U.S. manufacturing job creation and energy savings.
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PowerAmerica is a Member Led Manufacturing Institute l‘

Active in All Areas of the Power GaN/SiC Supply Chain
PowERAMERICA
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SiC and GaN Power Devices Allow for More Efficient /‘
and Novel Power Electronics PowErR AMERICA
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Large Bandgap and Critical Electric Field allow for high voltage devices with thinner layers:
lower resistance and associated conduction losses

Thinner layer and low specific on-resistance allow for smaller form factor that reduces
capacitance: higher frequency operation, reduced size passives
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Large SiC Bandgap and Thermal Conductivity Enable Robust /‘
High Temperature Operation with Reduced Cooling

PoweERAMERICA
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SiC/GaN devices enable more efficient,
lighter, smaller form factor power
electronics operating at high frequencies,
and at elevated temperatures with
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Large Bandgap results in relatively low intrinsic carrier concentration: low leakage and
robust high temperature operation

Large Thermal Conductivity: high power operation with reduced cooling requirements
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WBG Devices Are Uniquely Positioned to Enable Next
Generation Power Electronics Growth
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Graphs: Isic C. Kizilyalli et al., ARPA-e Report 2018
https://arpa-e.energy.gov/sites/default/files/documents/files/ARPA-E_Power_Electronics_Paper-April2018.pdf
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Reliability and Ruggedness are Prerequisites /‘
for Wide SiC Power Electronics Adoption POWERAMERICA

» Material quality and fabrication improvements contribute to device
reliability

= Minimize wafer material defects and improve planarity
= Eliminate defect generation during processing

 Ruggedness is a device design trade-off
= Design rugged SiC devices with safe operating areas similar to Si
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Basal Plane Dislocations Can Compromise A
SiC Device Reliability and Performance PowER AMERICA

Basal Plane Dislocations (BPDs) are defects that can propagate from the substrate
to the epitaxial layers where devices are fabricated (material defects).

Basal plane dislocations can also be generated during the high temperature SiC
ion implantation process (processing defects).

Under bipolar current flow, electron-hole pair recombination at BPDs induces
stacking faults, which degrade device electrical characteristics.

Electron-hole conduction occurs in bipolar devices and in certain modes of unipolar
device operation; unipolar devices are also affected by BPDs.

Techniques are being developed to convert substrate BPDs into benign “Threading
Edge Dislocations”, and to eliminate BPD generation during implantation.
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BPD induced stacking fault related degradation has
limited adoption of high voltage SiC power devices
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Bipolar Current Flow in the Thick Drift Epilayers of SiC l‘
Devices Can Degrade Electrical Characteristics

POWERAMERICA
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JFETs with 100-um drift Epilayers were Used to A

Investigate Bipolar Current Related Degradation PowERAMERICA
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Small JFET area decouples electrical characteristics from the
deleterious effects of multiple material and processing defects
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Bipolar Current Stressing of JFETs can Lead to A

Forward Gate-Drain Voltage Degradation PowERAMERICA
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JFETs were subjected to a forced bipolar gate-drain
current density of 100 A/cm? (920 W/cm?)
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Bipolar Current Degrades Forward Gate-Drain Voltage;
Other JFET Diode Characteristics are Unaffected
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Bipolar Current Flow Degrades Trans-conductance l‘
and Forward On-state Current
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Degraded JFETs were Annealed at 350 "C A
for 96 hours in a N, Environment PowERAMERICA

Annealing Reverses Bipolar Current Induced Degradation in SiC PiN and MPS Diodes

350 °C JFET anneal conditions:
*4 cycles of 24 hours with ramp up and ramp down
*96 hours total of continuous anneal

Gate-drain diode degradation Gate-drain diode degradation
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Will annealing reverse BPD related degradation in JFETs?

Does annealing affect non-degraded JFET electrical characteristics?
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JFET Annealing at 350 °C Reverses Gate-Drain ‘

Forward Voltage Degradation PowEer AMERICA

Vgs (V) s
-100 -80 -60 -40 -20 0 s ’ 8
i m Pre-stress 2]
; ; ; 1.0E-05 X
8 @ Pre-stress 0.4 +— a Post5 hrsat 100 A/cm’ stress _—?f_
i - o Post 350°C anneal
4 Post5 hrs at 100 A/cm? stress 1-0E-06 L :
0.3 G
o Post 350°C anneal — 1.0E-07 = N
< z &
1.0E-08 2 » 0.2 ol
= — L ofd
o
....... 1.0E-09 0.1 o,,..
llllll $‘ %‘
SRRy, | 1.0E-10 prain 00 é
L OB Gate-Source Diode 0 1 2 3 4
Ves (V)
1
Source 0 .1 6 - | I
100 um drift
° N buffer 0 .1 2
£ <
= ~ 0.08
T (]
» 2 ‘
e up 0.04
e re-stress Ne ) B Pre-stress
L A Post 5 hrs at 100 A/(;m2 stress Drain A Post-stress after § hO:JI’S at 100 Alcm?-
001 ' = ! ! ! ! ! . . 0 00 o Post-sltress after 35‘0 C anneal .
Gate-Drain Diode :
0 1 2 3 4 5

0 5 10 15 20 25
Vep (V)

'VGD (kV)

V. Veliadis



JFET Annealing at 350 "C Reverses Forward

On-state Current Degradations
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First and only SiC transistors to
demonstrate full recovery of their BPD
degraded electrical characteristics
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Trade-offs in Resistance and Ruggedness Drive SiC MOSFET
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Avalanche Ruggedness Testing Defines Device A

Safe Operating Area Power AMERICA

» During the fault condition the energy stor- —=—~='---*~-"ctor gets
dumped into the lower MOSFET. :ﬂ
ONJ*— I(t)
* In this case, the lower MOSFET goes int ey
« MOSFET avalanche ruggedness is defin LR energy
dissipated without catastrophic damage. J
OFF

: Faullt ormal ope
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2 ,
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Normal operation Avalanche condition

-
=2

Gen-3 10 kV MOSFET
Active area 32 mm?

Investigate avalanche ruggedness of Wolfspeed Gen-3 10 kV/15 A SiC MOSFETs
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Unclamped Inductive Switching Testing A
Characterizes Avalanche Ruggedness PowERAMERICA

Single pulse Unclamped Inductive Switching:

* The inductor L is charged to desired |, .

* Turning the DUT gate OFF results in gL
avalanche condition.

Vbbp C-D —__Cpc SiC MOSFET |D

* The device voltage shoots up to the —
avalanche voltage. T [emeomer |25

* Avalanche energy E,,, greater than the
critical energy results in permanent device °
failure. \

* Avalanche ruggedness is measured by E,, . Tay

* |Inductor L is varied to obtain avalanche at
different peak current levels | AV Vos

Vbp
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Experimental Set-up of Single Pulse Unclamped /‘

Inductive Switching PowEer AMERICA

* Air core inductors

 Pearson CT 3972

 Tektronix P6015A
HV probe
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Representative Unclamped Inductive Switching A

Waveforms to Catastrophic MOSFET Failure PowERAMERICA
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MOSFETs Exhibit Average Avalanche Energies of A

7.2 J in Unclamped Inductive Switching Testing PowERAMERICA

60

* Inductor L is varied to obtain
four different avalanche
currents. S0+

VDD = 1200V

* The average avalanche energy
at failure is about 7.2 Joules. <

- Extrapolating the |, - t,, curve — 4|

to the rated current of 15 A
resultsint,,, > 40 ps.

20 |
* Typical gate drives interrupt
faults in well below 40 ps.

10 ' ' ' ' '
18 20 25 30 35 40 45
TAV (18)

The 10-kV/15-A MOSFETSs exhibit avalanche ruggedness
with a > 40 us time to catastrophic failure
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High Voltage SiC Devices are Making Strides in /‘

Establishing Their Ruggedness and Reliability Power AMERICA

» The effects of bipolar stress induced stacking faults on the electrical
characteristics of 10 kV SiC devices have been investigated.

* Bipolar stress in the presence of BPDs can lead to forward gate-drain p-n
junction and on-state conduction degradations that are fully recovered by
high temperature annealing.

« Avalanche ruggedness of 10 kV/15 A SiC MOSFETs is characterized using
Unclamped Inductive Switching testing.

* The average avalanche energy prior to catastrophic failure is 7.2 J, which is
superior to that of earlier generations of 10 kV SiC MOSFETSs.

« At the 15 A rated current, the time to MOSFET avalanche catastrophic
failure exceeds 40 s, which is much larger than typical gate drive fault
interruption times.
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PowerAmerica Accelerates WBG commercialization

11th International MOS-AK Workshop
(co-located with the IEDM and CMC Meetings)
Silicon Valley, December 5, 2018

Power AMERICA

e s ‘ A workforce well PowerAmerica funds
Minimiz Ing capi tal trained in WBG power building-block proj-
expenditures by electronics is key in ects in multiple areas
creating the large of the WBG supply
device demand that chain that synergisti-

WBG device fabrica-
tion in large-volume
Si foundries exploits exploiting the mature

economies of scale

Si—pr ocessing Capabili- will spur volume cally culminate in

ty lowers fabrication manufacturing with large-scale WBG
its cost-lowering power electronics

costs. benefits.

and is key in lowering

cost. adoption.

Questions?
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