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Motivation and Purpose
• RTN is a critical issue for RRAM devices (memory / synapse) but it

can also be exploited as an entropy source (e.g., in RNGs and
PUFs).

• A Compact Model for RTN in RRAMs is still missing.
• The first Verilog-A Compact Model of RTN in RRAMs:

• Valid in both resistive states.
• Easily tweakable and adaptable to a variety of materials.
• Accounts for the intrinsic randomness in the number of 

defects (i.e., it includes also multi-level RTN) contributing to 
the RTN and their properties.

• Can be steadily integrated in existing RRAM device compact 
models to perform advanced simulations and circuit design 
for many applications.

• We show how it can be used in the design of the building block of a
Truly-Random Number Generator circuit.
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Introduction
Memory hierarchy: filling the gap

Today

Tomorrow
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Introduction

Proposed Applications:

HfO2-based device: not only NVM!

Memristor:
Logic-in-MemoryNeuromorphic Computing:

Hardware Synapse Intrinsically Secure Device: 
Unclonable Circuits
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The Resistance Model

• We model the resistance of the RRAM by assuming:
• A simplified regular shape of the CF (constant S across CF length)
• Reading conditions (i.e., low applied field) 
• Full CF in LRS (Ohmic transport)

• Impact of temperature is neglected but can be easily incorporated in the ρCF term
• Ruptured CF in HRS à barrier (Trap-Assisted Tunneling conduction)

• Includes the effect of temperature with an Arrhenius activation term

• Parameters:
• k estimated by physics-based simulations including TAT
• ER extracted from R measurement in HRS at different T
• ρCF is taken from the literature
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General representation of R valid in both LRS and HRS



Charge Transport

• Charge transport is modeled starting from the R description:
• Full CF in LRS (Ohmic transport)

• Ohm’s law
• Ruptured CF in HRS à barrier (Trap-Assisted Tunneling conduction)

• Non-linear charge transport accounted for by using a compact formula
• V0 extracted from I-V measurement in HRS and further verified by physics-based 

simulations
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Switching Dynamics
• Switching dynamics is fully encoded in a set of coupled differential

equations linking the barrier thickness to the applied voltage (V) and
to the internal temperature (T):

• Reset and Set ops. associated with the barrier growth and collapse
• Field-driven oxygen ions drift/diffusion and recombination (reset) – parameters ED, 

g0, a, b
• Field-accelerated thermochemical Hf-O bond breakage (set) – parameters EG, f

• Thermal dynamic effects included
• Localized power dissipation as a result of charge transport (Cp)
• Includes a term to model heat exchange between the CF/barrier and its 

surroundings (kT)
• Includes the effect of different ambient temperature (T0)
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Results
• Model calibrated on exp. data from a TiN/Ti/HfO2/TiN device

• DC (quasi-static ramped voltage switching)
• AC (ns pulsed switching)

• DC data
• IC = 100 µA, VRESET = -1.3 V

• AC data
• Pulsed reset op.
• VRESET = -1.1 V / -1.2 V / -1.3 V
• Pulse width = 10 ns
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Variability
• Experimental cycling variability 

features:
• Normal R distribution in LRS
• Log-normal R distribution in HRS 

(normal distribution of x in HRS)
• Modeled by using two Gaussian 

variability sources
• S randomly varied from normal 

distribution at each SET event
• x randomly varied (normal 

distribution) during each RESET 
event

• Compact model predicts μ, while 
σ does not depend on op. 
conditions and can be easily 
extracted from variability data 
and included in the model for 
variability-aware sim.
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Random Telegraph Noise

• The dominant noise in RRAM
• Trouble or Resource?

• Read errors
• Reduced effective memory window
• Synaptic weight random fluctuations
• Reduced hamming distance in PUFs
• Reduced effective randomness in RNGs
• RTN-based RNGs
• RTN-based PUFs
• Entropy Source
• Exploratory tool
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RTN in RRAM: Physics
• The physical picture of RTN in RRAM

• Due to defects (charge trapping and de-trapping)
• Can always be seen as an alteration of charge transport
• Dependent on the resistive state (charge transport is different in the two 

states!)

• We perform careful RTN analysis in both LRS and HRS, across many
switching cycles and on many devices in different conditions (VRESET, IC, T)
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RTN in HRS: Physics
• The physical picture of RTN in RRAM in HRS

• HRS charge transport is supported by TAT at Vo
+ defects

• Charge trapping at additional defects (interstitial oxygen) perturbs the local 
potential drastically affecting TAT transport at Vo

+ defects nearby

• Comparison of exp. data and physics-based simulations including
Vo+ and interstitial oxygen defects confirms the picture.
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RTN in HRS: Compact Model 
• RTN amplitude (ΔI or equivalently ΔR) statistics in HRS:

• Charge transport limited by the barrier (TAT at Vo
+ defects)

• RTN given by Vo
+ defects “activation/de-activation” due to e- trapping/de-

trapping at interstitial oxygen defects close to Vo
+ defects

• CF-size, barrier-size, voltage, temperature independent
• Confirmed by physics-based kinetic Monte-Carlo simulations

• Compact formulation of amplitude statistics in HRS
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Include dependence on temperature, 
voltage, and defect position and typology.



RTN in LRS: Physics
• The physical picture of RTN in RRAM in LRS

• Charge transport = Delocalized electron flow along the CF
• CF made of tightly packed Vo+ defects, therefore their individual 

activation/deactivation produces no sensible effect
• RTN due to screening from trapped charge at defects around the CF
• Can be both Vo+ and O interstitials
• CF-size dependence (reported in the literature as well)
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RTN in LRS: Compact Model 
• RTN amplitude (ΔI or equivalently ΔR) statistics in LRS:

• Charge transport limited by the CF
• Screening effect on the CF (CF-size dependent) modeled with geometrical 

simplification to derive a simple formula

• Compact formulation of amplitude statistics in LRS
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RTN in RRAM: Complete Compact 
Model 
• Complete formulation of RTN amplitude statistics

• Compact formula valid in both states
• RTN amplitude statistics correctly reproduced in many different 

operating conditions (also with ±3σ bounds!)
• Confirmed by validation against a significantly large dataset and data 

from the literature (also different materials!) 
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Compact Model Applications
• RRAM Compact Model enables

advanced circuit simulations for
many emerging applications.

• Here we show two examples
• Design of the building block 

of a Truly-Random Number 
Generator circuit exploiting 
the RTN randomness as an 
entropy source

• Design of a logic-in-memory 
circuit architecture 
implementing a 1-bit full-
adder accounting for the 
intrinsic variability of the 
resistive states and the logic 
state degradation.
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True-RNG Circuit based on RTN
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• Using the possibility to 
simulate RTN transient to 
design a True-RNG circuit:
• RRAM device in HRS

(x = 1 nm).
• Series transistor.
• Buffer with a high-pass 

filter.
• Comparator.
• Successful reproduction 

of the RTN pattern at 
the output (i.e., random 
bit stream) also in case 
of multilevel RTN
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Logic-in-Memory Circuits
• LiM associates logic states with RESISTIVE states, not voltage!

• A RRAM cell (P) holds 1 bit (memory) but the same bit also represent 
a logic value that can be processed in place (logic)! 

• A very promising LiM scheme to be realized using RRAMs.
• Two ops. (IMPLY and FALSE) that form a complete logic group:

• All possible logic gates can be built out of IMPLY and FALSE ops. 
• FALSE (i.e., always yields logic 0). Easy to realize with RESET.
• IMPLY (a two-input operation with the following truth table).
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small enough!



Logic-in-Memory Circuits
• IMPLY performed by applying appropriate voltages to the top

electrodes of the two RRAM devices (i.e., VCOND and VSET).
• FALSE: reset operation on the individual RRAM device.
• The VSET (= 1.16 V), VCOND (= 1.05 V), and RG (= 4 kΩ) values were

derived by using a custom optimization algorithm.
• Logic values chosen given the optimal VSET and VCOND together with

device variability features in both resistive states.
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Logic-in-Memory 1-bit Full-Adder
• Proposed implementation of a LiM 1-bit Full-Adder

• 9 devices and 43 steps (17 FALSE).
• Input devices logic states is preserved.
• Initial state of the additional devices is unimportant.
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Logic-in-Memory 1-bit Full-Adder
• Example: A=1 B=0 Cin=1 S=0 Cout=1.

• S and Cout (set to random values).
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Logic-in-Memory 1-bit Full-Adder
• Energy consumption breakdown

• FALSE op. (-3.5 V / 5 ns) is the most energy demanding.
• IMPLY performed with 10 ns pulses (optimized VCOND and VSET).
• Total energy consumption is 6.4 nJ.
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Logic-in-Memory 1-bit Full-Adder
• Energy consumption optimization and benchmarking

• FALSE conditions are heavily impacting on energy and time.

• LiM can compete with CMOS if R/W contributions are considered.
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*includes the energy and time needed to read 3 
bits (A, B, Cin) and write back two bits (S, Cout) to 

an external flash memory.

[4] S. Kvatinsky et al., IEEE Trans. VLSI Systems, vol. 22, no. 10, pp. 2054-2066, Oct. 2014.
[9] L. Cheng et al., 2017 J. Phys. D: Appl. Phys. 50 505102.

Exp. in [9] use relatively long pulses
(≈ μs). Using similar pulse width we get 

comparable energy consumption (67 nJ vs. 
19.5 nJ). However devices and RG are slightly 

different.

Excellent dependability
of the proposed approach!



Outline

• Introduction
• The RRAM Compact Model

• The Resistance Model
• Charge Transport
• Switching Dynamics (set and reset)
• Variability

• Including RTN in the Compact Model
• RTN physics in RRAM
• Compact Model of RTN in LRS and HRS
• Validation and Implementation

• Applications
• RTN-based True-RNG Circuit
• Logic-in-memory 1-bit Full-Adder

• Conclusions

11th International MOS-AK Workshop (Santa Clara - CA - U.S.A.) 30Dec. 05 2018



11th International MOS-AK Workshop (Santa Clara - CA - U.S.A.) 31

• Proposed compact model of RRAM devices
• Completely physics-based, works in all regime of operation (also 

ns-pulsed AC regime)
• Easily tweakable and adaptable to a variety of material systems
• Includes thermal effects, variability, and RTN (also multi-level)
• Validated against a large experimental dataset, literature data, and 

refined physics-based simulations.
• Written in Verilog-A for advanced circuit simulations for many 

applications: memory, neuro, PUFs, RNGs, more...

• The model can be successfully used to design innovative circuits
and reliably evaluate their performance (e.g., energy consumption)
• T-RNG circuits for security, authentication, cryptography
• LiM 1-bit Full Adder architecture with excellent energy/time 

performances, in-line with experimental data
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