Advances in SOI Compact Modeling

Prof. Benjamin Iñiguez, and Romain Ritzenthaler

Rovira i Virgili University (URV), Tarragona, Spain

MOS-AK Workshop, December 9th 2009, Baltimore

Funded by the European project COMON (Compact Modeling Network)

Contact: benjamin.iniguez@urv.cat / romain.ritzenthaler@urv.cat
Outline

Presentation of the COMON project

1. Introduction
2. Charge based compact models
3. Conformal mapping
4. Fourier’s series
5. Conclusions
Outline

Presentation of the COMON project
- Who are we?
- Goals
1. Introduction
2. Charge based compact models
3. Conformal mapping
4. Others techniques
5. Conclusions
EU COMON Project – Who are we?

COMON: COmpact MOdeling Network

🇺🇸 “Marie-Curie”
Industry-Academia Partnership and Pathways project (IAPP FP7, ref. pro. 218255)

✔ Duration:
4 years, started from Dec. 2008.

✔ Coordinator:
Prof. B. Iñiguez
(URV Tarragona)
benjamin.iniguez@urv.cat

More information available on our website: http://www.compactmodelling.eu
EU COMON Project – Goals

- To address the full development chain of Compact Modeling, to develop complete compact models of Multi-Gate MOSFETs (Foundry: Infineon), HV MOSFETs (Foundry: Austriamicrosystems) and III-V FETs (RFMD (UK)).

- Development of complete compact models of these types of advanced semiconductor devices.

- Development of suitable parameter extraction techniques for the new compact models.

- Implementation of the compact models and parameter extraction algorithms in automatic circuit design tools.

- Demonstration of the implemented compact models by means of their utilization in the design of test circuits.

- Validation and benchmarking: compact model evaluation for analog, digital and RF circuit design: convergence, CPU time, statistic circuit simulation.

+ facilitate the mobility of young researchers, secondments of knowledge, organisation of training courses, ...
Presentation of the COMON project

1. Introduction
 - SOI technology
 - Why several gates?
 - Multi-gate SOI structures benchmark

2. Charge based compact models

3. Conformal mapping

4. Others techniques

5. Conclusions
1.1 SOI technology

- Necessity to reduce the gate length while maintaining a good electrostatic control and controlling the leakages
1.1 SOI technology

- Necessity to control the gate length while maintaining a good electrostatic control and controlling the leakages

![Diagram showing SOI technology with labels: Gate, Junction leakages, isolation]
1.1 SOI technology

- Necessity to control the gate length while maintaining a good electrostatic control and controlling the leakages

![Diagram of SOI Technology]

- Junction leakages
- High field effects in the drain
1.1 SOI technology

- Necessity to control the gate length while maintaining a good electrostatic control and controlling the leakages.
1.1 SOI technology

- Necessity to control the gate length while maintaining a good electrostatic control and controlling the leakages
- Isolate the electrically active layer from the bulk
- SOI (Silicon On Insulator) concept

with SOI:
- Reduced parasitic effects – reduction of source/channel and drain/channel capacitances
- Better electrostatic control

SOI allows to continue further the downscaling

Junction leakages
High field effects
In the drain
Subthreshold leakages
1.2 Why several gates?

- Double-gate transistor
- Two conduction channels
 - good I_{ON}
- Excellent electrostatic coupling:
 - Short Channel Effects (SCEs) reduction
 - Leakage currents reduction

- But self-alignment of the gates required to maintain Double-gate advantages

 - Idea of vertical gates: FinFET type transistors
1.2 FinFET-like transistors

- **FinFET**: vertical Double-gate
- **Triple-gate** (plus avatars ΠFET and ΩFET)
- **Quadruple-gate** (or GAA), plus Surrounding-Gate FET

Better electrostatic control
1.3 (non exhaustive) SOI Benchmark

<table>
<thead>
<tr>
<th>Technology</th>
<th>State of the art</th>
<th>Main advantages</th>
<th>Main drawbacks</th>
<th>Potential for sub 30 nm nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Single-gate</td>
<td>Production</td>
<td>Well known process</td>
<td>Short Channel Effects Control</td>
<td>NO / MAYBE</td>
</tr>
<tr>
<td>Strained Single-gate</td>
<td>Development</td>
<td>Increased mobility</td>
<td>Relaxation of strained layers for small dimensions</td>
<td>YES</td>
</tr>
<tr>
<td>Partially Depleted SOI</td>
<td>Development</td>
<td>Pragmatic technology</td>
<td>Floating body effects</td>
<td>MAYBE</td>
</tr>
<tr>
<td>Fully Depleted SOI</td>
<td>Development</td>
<td>No Floating body effects</td>
<td>Thin and well-controlled thicknesses mandatory, Fringing fields in the BOX</td>
<td>YES</td>
</tr>
<tr>
<td>Double-gate SOI</td>
<td>Research</td>
<td>Two channels conduction, Good electrostatic control</td>
<td>Gate self-alignment, Thin channel thickness mandatory.</td>
<td>YES</td>
</tr>
<tr>
<td>FinFET SOI</td>
<td>Research</td>
<td>Self aligned technology, Relatively CMOS compatible</td>
<td>Lithographic pitch, Source/Drain Doping, Access resistances</td>
<td>YES</td>
</tr>
<tr>
<td>Triple-gate SOI</td>
<td>Research</td>
<td>Three conduction channels, Self aligned technology</td>
<td>Lithographic pitch, Source/Drain Doping, Access resistances</td>
<td>YES</td>
</tr>
<tr>
<td>Gate All Around SOI</td>
<td>Research</td>
<td>Good electrostatic control</td>
<td>Not a very pragmatic technology, Source/Drain Doping, Access resistances</td>
<td>YES</td>
</tr>
<tr>
<td>Multichannels</td>
<td>Research</td>
<td>Integration density, Good electrostatic control</td>
<td>Difficult process, Source/Drain Doping, Access resistances</td>
<td>YES</td>
</tr>
</tbody>
</table>
1.3 (non exhaustive) SOI Benchmark

<table>
<thead>
<tr>
<th></th>
<th>State of the art</th>
<th>Main advantages</th>
<th>Main drawbacks</th>
<th>Potential for sub 30 nm nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Single-gate</td>
<td>Production</td>
<td>- Well known process</td>
<td>- Short Channel Effects Control</td>
<td>NO / MAYBE</td>
</tr>
<tr>
<td>Strained Single-gate</td>
<td>Development</td>
<td>- Increased mobility</td>
<td>- Relaxation of strained layers for small dimensions</td>
<td>YES</td>
</tr>
<tr>
<td>Partially Depleted SOI</td>
<td>Development</td>
<td>- Pragmatic technology</td>
<td>- Floating body effects</td>
<td>MAYBE</td>
</tr>
<tr>
<td>Fully Depleted SOI</td>
<td>Development</td>
<td>- No Floating body effects</td>
<td>- Thin and well-controlled thicknesses mandatory</td>
<td>YES</td>
</tr>
<tr>
<td>Double-gate SOI</td>
<td>Research</td>
<td>- Two channels conduction</td>
<td>- Gate self-alignment</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Good electrostatic control</td>
<td>- Thin channel thickness mandatory.</td>
<td></td>
</tr>
<tr>
<td>FinFET SOI</td>
<td>Research</td>
<td>- Self aligned technology</td>
<td>- Lithographic pitch</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Relatively CMOS compatible</td>
<td>- Source/Drain Doping</td>
<td></td>
</tr>
<tr>
<td>Triple-gate SOI</td>
<td>Research</td>
<td>- Three conduction channels</td>
<td>- Lithographic pitch</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Self aligned technology</td>
<td>- Source/Drain Doping</td>
<td></td>
</tr>
<tr>
<td>Gate All Around SOI</td>
<td>Research</td>
<td>- Good electrostatic control</td>
<td>- Not a very pragmatic technology</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Source/Drain Doping</td>
<td></td>
</tr>
<tr>
<td>Multichannels</td>
<td>Research</td>
<td>- Integration density</td>
<td>- Difficult process</td>
<td>YES</td>
</tr>
</tbody>
</table>
Presentation of the COMON project

1. Introduction
2. SOI Charge based compact models
 - Surrounding-gate FETs
 - Double-gate transistors
 - FinFETs
3. Conformal mapping
4. Others techniques
5. Conclusions
2.1 Surrounding-gate FETs

➢ 1D Poisson’s equation (no SCEs):
\[\frac{d^2 \psi}{dr^2} + \frac{1}{r} \frac{d \psi}{dr} = \frac{kT}{q} \delta \cdot e^{-\frac{q(V-V')}}{kT} \]

➢ Solving the 1D Poisson’s equation [Jimenez’04], charge control model obtained:
\[(V_{GS} - V_0 - V) = \frac{Q}{C_{ox}} + \frac{kT}{q} \log \left(\frac{Q}{Q_0} \right) + \frac{kT}{q} \log \left(\frac{Q+Q_0}{Q_0} \right) \]

➢ Drain current calculation:
\[I_{DS} = \mu \frac{2\pi R^{\nu_{DS}}}{L} \int_0^{V_{DS}} Q(V)dV \]

2.1 SGFETs- Capacitance modeling

- Analytical expressions [Moldovan’09] of the total electrode charges obtained by integrating the mobile charge density over the channel length. Ward-Dutton partitioning is assumed. Capacitances are obtained by differentiation of total charges.

![Normalized C_{GD} (a, b) and C_{GS} capacitance (c, d) with respect to the gate voltage, for SG MOSFET $V_{DS}=0.05V$ (b,c) and $V_{DS}=1V$ (a,d). Solid line: DESSIS-ISE simulations; Symbol: analytical model. $L=1 \mu m$, $t_{Si}=20 \ nm$, $t_{ox}=2 \ nm$](image1)

![Normalized C_{DG} (a, c) and C_{SG} (b, d) with respect to the gate voltage, for SG MOSFET with $V_{GS}=0$, $V_{DS}=1V$ (a, d) and $V_{DS}=0.05V$ (c, d); $t_{Si}=31\ nm$, $L=1 \mu m$. Solid line: analytical model; Symbols: DESSIS-ISE simulation](image2)

2.1 SGFETs, short channels effects

- Inclusion of SCEs [AbdElHamid’07]:
 \[\phi(x, y) = \phi_1(y) + \phi_2(x, y) \]
 - \(\phi_1(y) \) Solution of the 1D Poisson’s equation
 - \(\phi_2(x, y) \) Solution of the remaining 2D equation

- Minimum of potential giving threshold voltage \(V_{TH} \) and subthreshold slope SS

DIBL vs. channel length \(L_G \) (radius = 5 and 10 nm).
Comparison between model (lines) and numerical simulations (circles, diamonds)

Subthreshold slope SS vs. channel length \(L_G \)
(radius = 5 and 10 nm). Comparison between model (lines) and numerical simulations (circles, diamonds)

2.3 Symmetrical Double-gate FETs

- Transistor in saturation [Lime’08]:

\[\phi(x, y) = a + b(x)y + c(x)y^n \]

\[\frac{\partial^2 \phi}{\partial x^2} - \frac{\phi}{\lambda^2} = 0 \]

with

\[\lambda = \sqrt{\frac{\varepsilon_{it}t_{it} + \varepsilon_{ox}}{\varepsilon_{ox}}} \]

\[\frac{1}{2} \left(1 - \frac{2}{n(n+1)} \right) \]

\[\frac{1}{2} \left(1 + \frac{1}{2r} - \frac{1}{n(n+1)} \right) \]

\[\phi(x = -\Delta L) = \phi_S + V_{\text{deff}} = \phi_{\text{sat}} \]

\[\frac{d\phi}{dx} \bigg|_{x=-\Delta L} = \frac{k v_{\text{sat}}}{\mu} \]

NMOS: \(k=2 \)
PMOS: \(k=1 \)

Electrostatic potential derived from 2D Poisson’s equation:

\[\phi(x, y) = \phi_1(y) + \phi_2(x, y) \]

\(\phi_1(y) \) Solution of the 1D Poisson’s equation
\(\phi_2(x, y) \) Solution of the remaining 2D equation

\[\phi(x, y) = \varphi_{\text{sat}} \cosh \left(\frac{\Delta L + x}{\lambda} \right) + \frac{k v_{\text{sat}}}{\mu} \varphi_{\text{sat}} \sinh \left(\frac{\Delta L + x}{\lambda} \right) \]

Determination of saturated length \(\Delta L \)
2.3 Symmetrical Double-gate FETs

(a) Saturation region length ΔL vs. drain current V_{DS}. ($V_{GS} - V_{TH} = 0.25$ and $0.5V$; $L = 50$nm)

(b) Output conductance G_D vs. drain current V_{DS}. $V_{GS} = 0.4, 0.75, 1, and 1.5 V$; $t_{ox} = 2$nm, $t_{Si} = 15$ nm and $L = 50$ nm.

Modeling of the saturation for Symmetrical Double-gate FETs
2.4 FinFETs compact modelling

- Relationship between the charge density and the potentials [Sallese’05][Tang’09]:
 \[v_g^* - v_{ch} - v_{to} = 4 \cdot q_g + \ln(q_g) + \ln[1 + \alpha \cdot q_g] \]
 with \(\alpha = \frac{C_{ox}}{C_{Si}} \)

 *This equation is solved by an explicit algorithm [Prégaldiny’06].

- Drain current expression:
 \[i = -q_m^2 + 2 \cdot q_m + \frac{2}{\alpha} \ln\left(1 - \alpha \cdot \frac{q_m}{2}\right) \]
 with \(q_m = f(v_g^* - v_{to} - v_{ch}) \)

Outline

Presentation of the COMON project

1. Introduction
2. Charge based compact models
3. Conformal mapping
 - Application to Fully Depleted single-gate FETs: effect of the Drain through the BOX
 - Symmetrical Double-gate FETs
4. Others techniques
5. Conclusions
3.1 What is conformal mapping?

- **Conformal transformation**: transformation of an analytical function in a complex space:

$$V(x+iy) = W(F^{-1}(x+iy))$$

- Conservation of the Laplace’s equation in the two spaces

 → **Simplification of the geometry possible**

- Application to FDSOI structures:
3.1 FDSOI: effect of the Drain through the BOX

- Penetration of the electric field from the drain into the BOX and the substrate
 - Electrostatic potential at the body-BOX interface modified
 - Because of coupling between back and front channels (Lim & Fossum model), front channel properties degraded

'Drain Induced Virtual Substrate Biasing' (DIVSB) effect [Ernst'99]

3.1 Conformal mapping in the BOX for FDSOI

- **Bidimensionnal case: fully depleted transistor**

\[
\psi_{\text{TOT}}(x, y, V_S, V_D, V_B, V_{G2}) = \psi_{G2}(y, V_B, V_{G2}) + \psi_S(x, y, V_S, V_B) + \psi_D(x, y, V_D, V_B)
\]

- **Superposition theorem:**

\[
\psi_D(x, y) = \text{Re} \left\{ \frac{V_D - V_B}{i\pi} \ln \left[1 + \exp \left(\frac{\pi}{t_{\text{BOX}}} \frac{L}{2} \right) \right] \right\} = \frac{V_D - V_B}{\pi} \arctan \left(\frac{\sin \left(\frac{\pi}{t_{\text{BOX}}} \frac{y}{2} \right) \exp \left(\frac{\pi}{t_{\text{BOX}}} \frac{L}{2} \right)}{1 + \cos \left(\frac{\pi}{t_{\text{BOX}}} \frac{y}{2} \right) \exp \left(\frac{\pi}{t_{\text{BOX}}} \frac{L}{2} \right)} \right)
\]

Electrostatic potential modelling in the BOX
3.1 Conformal mapping in the BOX for FDSOI

- Comparing with numerical simulations (using ISE/Synopsis) [Ernst’07]:

![Graph showing electrostatic potential comparison between analytical model and numerical simulations.](image)

Comparison model / numerical simulations (ISE DESSIS)

3.2 Application to Symmetrical Double-gate FETs

- In the subthreshold regime (resolution of 2D Laplace’s equation) for Double-gate FETs [Børli’08] and Schottky Barriers DGFETs [Schwarz’09]:

\[\varphi(u, v) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{v}{(u - \bar{u})^2 + \nu^2} \varphi(\bar{u}) d\bar{u} \]

- Scheme and core formula (‘Poisson’s integral’)

- 2D closed form
- No fitting parameters
- Intrinsically compact expression
- Excellent agreement with numerical simulations

Potential in the channel obtained for a step of gate bias V_G with model (solid lines) and numerical simulations (points). Drain voltage $V_D = 0$ V (a) and 1 V (b). $L_G = 22$ nm, $t_{Si} = 10$ nm.

[Schwarz’09] M. Schwarz et al., to appear in ISDRS’09 proceedings, Dec.. 2009
Outline

Presentation of the COMON project

1. Introduction
2. Charge based compact models
3. Conformal mapping
4. Fourier’s series development
 - Triple-gate FETs 2D interface coupling
 - Π-gate FETs 2D interface coupling
5. Conclusions
4.1 Triple-gate FETs 2D interface coupling

- Resolution of 2D Laplace’s equation using series’s development and Gauss’s theorem at the interfaces:

![Resolution of 2D Laplace’s equation using series’s development and Gauss’s theorem at the interfaces.](image)

- Comparison front-gate threshold voltage V_{TH1} vs. back-gate bias V_{G2} with model (lines) and numerical simulations (squares)
4.2 Π-gate FETs 2D interface coupling

Tranversal cross-section for Triple- and Pi-gate FETs

The process-induced gate overetch in the BOX is improving the device scalability

Subthreshold slope SS vs. gate length L_G for TG and Pi-FETs (from [Park’01])

4.2 Π-gate FETs 2D interface coupling

Comparison front-gate threshold voltage V_{TH1} vs. back-gate bias V_{G2} with model (lines) and experimental measurements (squares) [Ritzenthaler’09]

Perfect agreement analytical model/experimental measurements

4.2 Π-gate FETs 2D interface coupling

- **Coupling coeff.** : slope of $V_{TH1}(V_{G2})$ when the back-gate is depleted.
- **Good agreement** between experimental measurements and model.
- Triple-gate FETs are slightly more sensitive to back-gate influence than Pi-gate FETs.

Comparison coupling coefficient vs. gate width W using model (lines) and experimental measurements (squares)

Comparison front-gate threshold voltage V_{TH1} vs. back-gate bias V_{G2} with model (lines), compact model (dashed lines) and experimental measurements (squares)

Compact model of the threshold voltage taking into account the effect of the overetch
Presentation of the COMON project

1. Introduction
2. Charge based compact models
3. Conformal mapping
4. Others techniques
5. Conclusions
5. Conclusions

- Recent developments in compact/analytical modeling from COMON partners presented:

 ✓ **Compact charge based models** in Multiple-Gate MOSFETs (DG MOSFETs, GAA MOSFETs, FinFETs):
 - A **core model**, developed from a unified charge control model obtained from the 1D Poisson’s equation (using some approximations in the case of DG MOSFETs).
 - **2D or 3D scalable models** of the short-channel effects (threshold voltage roll-off, DIBL, subthreshold swing degradation and channel length modulation), developed by solving the 2D or 3D Poisson’s equation using appropriate techniques.

 ✓ **Conformal mapping** technique presented, with applications to the case of fringing fields in FDSOI, and Schottky Barriers DGFETs.

 ✓ **Series’s development** used to develop compact threshold voltage models for 2D interface coupling in Triple-gate and Pi-FETs architectures.
Thank you for your attention!

Special thanks to all the contributors:
✓ **URV Tarragona** (Spain): Prof. B. Iñiguez, Dr. F. Lime, Dr. O. Moldovan, Dr. H. Abd El Hamid, Dr. B. Nae, G. Darbandy, M. Cheralathan.
✓ **FH Giessen** (Germany): M. Schwarz, M. Wiedemann, Prof. A. Kloes.
✓ **Strasbourg University** (France): M. Tang, Dr. F. Prégaldiny, Prof. C. Lallement.
✓ **EPFL Lausanne** (Switzerland): Dr. J.-M. Sallese

and special acknowledgments to:
✓ **LETI Grenoble** (France): Dr. O. Faynot, Dr. T. Ernst
✓ **Minatec Grenoble** (France): Prof. Sorin Cristoloveanu
✓ **Tyndall Cork** (Ireland): Prof. J.-P. Colinge
Back-up slides
Triple-gate FETs short channel effects

- Inclusion of SCEs [AbdElHamid’07-2]:
 \[\phi(x,y) = \phi_1(y) + \phi_2(x,y) \]
 - \(\phi_1(y) \) Solution of the 1D Poisson’s equation
 - \(\phi_2(x,y) \) Solution of the remaining 3D equation

- Conduction path approach and virtual cathode position calculation.

Subthreshold slope SS vs. channel length L_G. Comparison between model (lines) and numerical simulations (markers)
