MOVING VARIABILITY FROM DEVICES TO HIGHER LEVELS OF ABSTRACTION

André Lange, Joachim Haase

MOS Modeling and Parameter Extraction Working Group

www.goldstandardsimulations.com

The project Cool EDesign is part of the Leading-Edge Cluster „Cool Silicon“, which is sponsored by the Federal Ministry of Education and Research (BMBF) within the scope of its Leading-Edge Cluster Competition.
AGENDA

- Motivation & goals
- Preliminary discussions
- An approach for multivariate statistical modeling
- Extending BSIM4 towards statistical device modeling
- Abstracting variability using multivariate statistical modeling
- Summary & outlook
Motivation & Goals

- Fluctuations in semiconductor manufacturing
 - Global variations
 - lot-, wafer-, and reticle-based processing
 - Local variations in modern technology nodes
 - Discreteness of charge and matter

- Correlated variations in electrical characteristics

Bukhari et al., 2009.
Cheng et al., 2010.
Twaddle et al., 2009.
Motivation & Goals

- Statistical hierarchical model

- Anpassung
- Gleichrichtung
- Spannungsregelung

- Modulator
- Demodulator

- Transponder ASIC

- Overvoltage protection
- Takt-Erzeugung

- Digitalpart

- Sensor
- ADC
- EEPROM

Ch. Sohrmann, Fraunhofer EAS
Preliminary Discussions

- B. Cheng et. al.
 - 7 device parameters not necessarily Gaussian correlations

- U. Kovac et. al.
 - Multivariate Nonlinear Power Models (NPM)

- A. Lange et. al.
 - Generalized Lambda Distributions (GLD)
An Approach for Multivariate Statistical Modeling

- Description of marginal distributions: Generalized Lambda Distribution (GLD)

\[x_i = F_{X_i}^{-1}(u) = \lambda_{i,1} + \left(\frac{y^{\lambda_{i,3}} - 1}{\lambda_{i,3}} - \frac{(1-y)^{\lambda_{i,4}} - 1}{\lambda_{i,4}} \right) / \lambda_{i,2} \]

- Multiple shapes, including Gaussian
- 4 parameters \(\rightarrow \) compact

- Correlations: rank correlation coefficients

\[r_{X_i, X_j} = \text{corr} [\text{rk}(X_1), \text{rk}(X_2)] \]

- Application

 Training data \(\rightarrow \) Model fitting \(\rightarrow \) Random sampling
Extending BSIM4 towards Statistical Device Modeling

- (35x35)nm² NMOS and PMOS
- Device simulation of 200 microscopically different devices for each transistor type
- Mapping characteristics to BSIM4 device models
- 7 parameters capture variability

www.goldstandardsimulations.com
Extending BSIM4 towards Statistical Device Modeling Marginal Distributions

- Usually non-Gaussian distributions
- Approximation using NPM and GLD feasible

<table>
<thead>
<tr>
<th>Model Parameter</th>
<th>Anderson-Darling test for normality</th>
<th>KS test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLD</td>
</tr>
<tr>
<td>vth0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>rdsw</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>nfactor</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>voff</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>u0</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>dsb</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>vsat</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

KS test: Kolmogorov-Smirnov test

NPM: Non-linear power model
Extending BSIM4 towards Statistical Device Modeling Correlations

Green: GLD; Red: NPM
Extending BSIM4 towards Statistical Device Modeling Application in SPICE Simulations

(a) inverter

(b) three-stage ring oscillator
Extending BSIM4 towards Statistical Device Modeling
Intermediate Results

- Origin: Industry-standard MOSFET compact model BSIM4
- Process variability leads to correlated non-Gaussian device model parameters
- GLD & rank correlation as a suitable method for modeling
- Application in circuit simulation shown

Diagram:
- Training data
- Model fitting
- Random sampling
Abstracting Variability Using Multivariate Statistical Modeling

- Focus on digital IC design
- Statistical extensions
 - Measurements → device model
 - Device model → logic gate model
 - …
Abstracting Variability Using Multivariate Statistical Modeling

- Example: Inverter chain
 - Up to 9 stages
 - Fixed input transition and output load

- Statistical gate-level analysis
 - Timing and energy

- Statistical inverter modeling
 - Delay, dynamic energy, leakage, …

- Characterization approaches
 - Direct extraction from SPICE reference simulation
 - Piecewise characterization
Abstracting Variability Using Multivariate Statistical Modeling

- Example: Inverter chain

- Direct extraction – 9 stages
Abstracting Variability Using Multivariate Statistical Modeling

- Example: Inverter chain

- Piecewise characterization – 8 stages
Abstracting Variability Using Multivariate Statistical Modeling

- Example: Inverter chain
- Analysis errors
Abstracting Variability Using Multivariate Statistical Modeling

- Example: Inverter chain

- Analysis effort

- Next steps
 - Application to industry-standard logic gate models: NLDM, CCS
 - Further research on characterization and analysis approaches
Summary & Outlook

- Global and local process variability
 - partially correlated device variability

- Modeling of variability
 - multivariate statistical modeling
 - Generalized Lambda Distribution (GLD)
 - Rank correlation coefficients

- Application examples
 - BSIM4 extension
 - Statistical logic gate models

- Outlook
 - Further abstraction of process variability