A multi-tool measurement software

Axel Fischer und Felix Kaschura GbR

29.09.20 @ virtual MOS-AK workshop, THM Gießen
Introduction

- SweepMe! is a spin-off from IAPP, TU Dresden
- Founders: Axel Fischer and Felix Kaschura
- Background: organic semiconductor physics & electronics
- **October 2019:** SweepMe! is available worldwide
Introduction

- Network analyzer
- Oscilloscope
- Parameter analyzer
- LCR meter
- Wafer prober
- Signal generator
- SMU
Introduction

Instruments are combined in various ways:

- Network analyzer
- Oscilloscope
- Parameter analyzer
- LCR meter
- Signal generator
- SMU
- Wafer prober
Introduction

Instruments are combined in various ways:

- Network analyzer
- Oscilloscope
- Parameter analyzer
- LCR meter
- Wafer prober
- Signal generator
- SMU

• Instruments are combined in various ways
Introduction

Instruments are combined in various ways:

Network analyzer

Oscilloscope

Parameter analyzer

LCR meter

Wafer prober

SMU

Signal generator
Can we organize all instruments in a modular way?
Gameplay
Gameplay

<table>
<thead>
<tr>
<th>Measurement tree</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WaferProber</td>
<td>Nucleus</td>
</tr>
<tr>
<td>SMU Gate</td>
<td>HP 415x CH1</td>
</tr>
<tr>
<td>SMU Drain</td>
<td>HP 415x CH2</td>
</tr>
<tr>
<td>SMU PD</td>
<td>Keithley26xx Ch A</td>
</tr>
<tr>
<td>Signal</td>
<td>33220A</td>
</tr>
<tr>
<td>Scope</td>
<td>HMO3004</td>
</tr>
</tbody>
</table>
Gameplay

- Combine different devices & interfaces
- Quickly create nested for-loops
- Add modules at higher or lower level
Gameplay

Pseudo code:

for each position of WaferProber:
 for each voltage of SMU Gate:
 for each voltage of SMU Drain:
 for each voltage of SMU PD:
 apply set values
 call all measurement values

for each value of Signal:
 for each value of Scope:
 apply set values
 call all measurement values
Gameplay

Main program
Gameplay

Module
Gameplay

Driver („Device class“)
Final look
Final look

- Use Widgets, like **Plot**, **Monitor**, **Image** to create dashboard like interfaces
- Widgets can be created & configured during the measurement
Program structure

<table>
<thead>
<tr>
<th>Main</th>
<th>Features:</th>
</tr>
</thead>
</table>
| Free | - creating program procedures
- provide Widgets to visualize data
- save and restore settings
- load new content & manage versions |

<table>
<thead>
<tr>
<th>Add-on modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready-to-use modules:</td>
</tr>
</tbody>
</table>
| - extending the functionality of the free content
- sold per computer unit |
| **Customized modules:** |
| - programmed for a single customer with special requirements |
| **External modules:** |
| - created by a third-party developer |

<table>
<thead>
<tr>
<th>Included modules</th>
<th>Features:</th>
</tr>
</thead>
</table>
| Free | - configure instruments
- saving data
- control program procedure
- basic measurements |

<table>
<thead>
<tr>
<th>Devices</th>
<th>Features:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free</td>
<td></td>
</tr>
</tbody>
</table>
Open source| - small code snippets
- instrument communication
- shared across all users
- can be contributed by users |
Program structure

Main
- **Features:**
 - creating program procedures
 - provide Widgets to visualize data
 - save and restore settings
 - load new content & manage versions
- **Included modules**
 - **Features:**
 - configure instruments
 - saving data
 - control program procedure
 - basic measurements
- **Devices**
 - **Features:**
 - small code snippets
 - instrument communication
 - shared across all users
 - can be contributed by users

Add-on modules
- **Ready-to-use modules:**
 - extending the functionality of the free content
 - sold per computer unit
- **Customized modules:**
 - programmed for a single customer with special requirements
- **External modules:**
 - created by a third-party developer

https://test.pypi.org/project/pysweepme/
Generic driver structure

- A Device Class allows you to implement any instrument via an open interface.

- It is **python** and thus many third party packages can be used.

- Put your code into semantic functions like:
 - "initialize"
 - "apply"
 - "measure"
 - "call"
 - ...

```python
class Device(EmptyDevice):
    def __init__(self):
        EmptyDevice.__init__(self)
        self.shortname = "Mouse"
        self.variables = ["x", "y", "x_press", "y_press", "left_clicked", "Right_clicked"]
        self.units = ["px", "px", "px", "px", "", ""]
        self.plottype = [True, True, True, True, False, False] # define if it can be plotted
        self.savetype = [True, True, True, True, True, True] # define if it can be saved
        self.width = win32api.GetSystemMetrics(0)
        self.height = win32api.GetSystemMetrics(1)

    def measure(self):
        try:
            self.x, self.y = win32api.GetCursorPos()
        except:
            self.x, self.y = float('nan'), float('nan')
            # catches an exception if the TaskManager is opened and probably no cursor exists

        self.ButtonLeft = win32api.GetKeyState(0x01)
        self.ButtonRight = win32api.GetKeyState(0x02)

    def process_data(self):
        self.y = self.height-self.y-1 # makes a plot that directly corresponds to the cursor position

        if self.ButtonLeft < 0:
            self.x_press = self.x
            self.y_press = self.y
        else:
            self.x_press = float('nan')
            self.y_press = float('nan')
```
Version manager

• Download new versions of modules or devices

• Activate & deactivate content

• Switch between versions to test new features

• In future: Create a „virtual environment“
A simple sequence to take an IV curve: **SMU module + MakeFile**
Example:

- A second **SMU** can be added by drag&drop
Example:

- Three SMUs are used for a transistor measurement
Example:

- A **Loop** is used to repeat things
Example:

- Putting everything into a **WaferProber** module results in a wafer test
Example:

- And we can do it for every **Temperature**...
Example: Scientific publications

Vertical organic permeable dual-base transistors for logic circuits
Erjuan Guo, Zhongbin Wu, Ghader Darbandy, Shen Xing, Shu-Jen Wang, Alexander Tahn, Michael Göbel, Alexander Kloes, Karl Leo, Hans Kleemann
Nature Communications (2020)

Effect of the Degree of the Gate-Dielectric Surface Roughness on the Performance of Bottom-Gate Organic Thin-Film Transistors
Michael Geiger, Rachana Acharya, Eric Reutter, Thomas Ferschke, Ute Zschieschang, Jürgen Weis, Jens Pflaum, Hagen Klauk, Ralf Thomas Weitz

Experimental proof of Joule heating-induced switched-back regions in OLEDs
Anton Kirch, Axel Fischer, Matthias Liero, Jürgen Fuhrmann, Annegret Glitzky, Sebastian Reineke
Light: Science & Applications (2020)

Inside or outside: Evaluation of the efficiency enhancement of OLEDs with applied external scattering layers
Pen Yao Ang, Paul-Anton Will, Simone Lenk, Axel Fischer, Sebastian Reineke
Scientific Reports (2019)

Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device
Yichu Zheng, Axel Fischer, Michael Sawatzki, Duy Dai Hoan, Matthias Liero, Annegret Glitzky, Sebastian Reineke, Stefan C.B. Mannsfeld

Precise patterning of organic semiconductors by reactive ion etching
Marco Höppner, David Knepe, Hans Kleemann, Karl Leo
Organic Electronics (2019)

more on sweep-me.net/scientific_publications/
Example: Self-heating in OLEDs

Experimental proof of Joule heating-induced switched-back regions in OLEDs
Anton Kirch, Axel Fischer, Matthias Liero, Jürgen Fuhrmann, Annegret Glitzky, Sebastian Reineke
Light: Science & Applications (2020)
Example: Capacitive memory

Sequencer:

<table>
<thead>
<tr>
<th>Measurement tree</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold time values</td>
<td>Hold time values</td>
</tr>
<tr>
<td>Switch1</td>
<td>Hold</td>
</tr>
<tr>
<td>LCRmeter preBias</td>
<td>HP4284A</td>
</tr>
<tr>
<td>LCRmeter sweep</td>
<td>HP4284A</td>
</tr>
</tbody>
</table>

Sequencer:

<table>
<thead>
<tr>
<th>Measurement tree</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper voltages</td>
<td>Upper voltages</td>
</tr>
<tr>
<td>LCRmeter preBias</td>
<td>HP4284A</td>
</tr>
<tr>
<td>LCRmeter sweep</td>
<td>HP4284A</td>
</tr>
</tbody>
</table>

Sequencer:

<table>
<thead>
<tr>
<th>Measurement tree</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCRmeter preBias</td>
<td>HP4284A</td>
</tr>
<tr>
<td>Upper voltages</td>
<td>Upper voltages</td>
</tr>
<tr>
<td>LCRmeter sweep</td>
<td>HP4284A</td>
</tr>
</tbody>
</table>

Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device

Yichu Zheng, Axel Fischer, Michael Sawatzki, Duy Dai Hoan, Matthias Liero, Annegret Glitzky, Sebastian Reineke, Stefan C.B. Mannsfeld

Advanced Functional Materials (2019)
Services & users

What we offer?

• A platform on which content is shared across institutes to decrease costs and time.
• Programming „bottom-up“: Start with small settings and extend them anytime.
• We can support you by creating settings, new drivers or custom modules.
• We provide add-on modules for those who want to create complex procedures.

Find a list of our reference users online:
https://sweep-me.net/our_users
Thank you!

![SweepMe Logo]

LinkedIn: sweepme
Twitter: sweep_me_net

www: sweep-me.net

email: contact@sweep-me.net
Why we need agile software...

THE LIFE OF A SOFTWARE ENGINEER.

CLEAN SLATE. SOLID FOUNDATIONS. THIS TIME I WILL BUILD THINGS THE RIGHT WAY.

MUCH LATER...

OH MY. I’VE DONE IT AGAIN, HAVEN’T I?

by Manu Cornet (bonkersworld.net)