Emerging Devices: RFETs and OPBTs

Ghader Darbandy
NanoP, TH Mittelhessen University of Applied Sciences, Gießen, Germany

MOS-AK 30.09.2020
Outline

- **Reconfigurable FETs (RFETs)**
 - Fabricated SB Si NW Devices
 - Characteristics, and Simplified Design

- **Organic Permeable Base Transistors (OPBTs)**
 - Conventional Lateral OFETs
 - Vertical OFET, and OPBTs

- **Conclusion**
SB Si NW RFETs

- Namlab, TU-Dresden:
 - Dynamically **switching** between n- and p-type **polarity**.
 - Different logic **computations** use the **same hardware**.
 - Number of **devices** can be reduced by **50%**.

RFET structure and TCAD

RFET Characteristics

- Modify effective mass, the band gap, and thus barrier height [1].

\[T_{n,p} \propto \frac{e^{-4} \sqrt{2m_{n,p}^*}}{3q\hbar E} \phi_{n,p}^{1.5} \]

- Symmetric characteristics
- on/off > 1e7
- Dynamical reconfigurable

Theoretical limit of unipolar I-V

- Electron and hole contributions of an ambipolar SGT.

- Ideal unipolar (e/h) I-V can be achieved by DG/SG RFET.
Outline

- Reconfigurable FETs (RFETs)
 - Fabricated SB Si NW Devices
 - Characteristics, and Simplified Design

- Organic Permeable Base Transistors (OPBTs)
 - Conventional Lateral OFETs
 - Vertical OFET, and OPBTs

- Conclusion
Lateral OFETs

- Planar or staggered OTFTs.
- Impressive investigations.
- Less development of f_T.
- Short L_{ch} is NOT feasible with low cost technology.

- An alternative to increase f_T mainly with short L_{ch}.
- Different kind of Vertical OFETs are reported.

Vertical OFETs

- The current flows perpendicular to the substrate.
- Thickness control down to 100nm with low-cost.

An issue was/is combination of lateral/vertical L_{ch}.

An alternative is OPBTs.

OPBTs

- Three parallel electrodes separated by two OSCs.
- Active length=T_{OSC} => controllable in nm range (low cost).
- Stable, reliable and repeatable characteristics are proved.

Record-high $f_T = 40$ MHz at $\mu_{Ver}=0.06$ cm2 V$^{-1}$ s$^{-1}$

A large room for further DC / f_T improvements.

OPDBTs

- **Optimization** of C_{par}
- $\mu_{\text{Lat}} = 25 \implies \mu_{\text{Ver}} = 0.06$ (cm2 V$^{-1}$ s$^{-1}$).
- **Engineering** of R_C.

$\Box f_T \geq 1\text{GHz}$ is realistic/achievable

($L_{ov} < 1\mu\text{m}, R_C \leq 100\Omega\text{cm}, \mu \geq 10$).

Outlines

- Reconfigurable FETs (RFETs)
 - Fabricated SB Si NW Devices
 - Characteristics, and Simplified Design

- Organic Permeable Base Transistors (OPBTs)
 - Conventional Lateral OFETs
 - Vertical OFET, and OPBTs

- Conclusion
Conclusion => **Compact Model**

- **Si NW RFETs:**
 - Dynamically switching polarity, number of devices down to 50%, technology design for **hardware security** (secure circuits).

- **OPBT:**
 - Great DC and record-high f_T and room for further improvements

- **Developing Compact Models:**
 - Novel **applications, circuit,** and **system** design!