Organic Permeable Base Transistors
"Schottky-type Contacts in Ultra-Short Channel Organic Semiconductor Devices for GHz-Operation“

Dr. Hans Kleemann, Group Leader // October, 1st, 2020
MOS-AK workshop & SB MOS Symposium, Giessen
Organic Thin-Film Transistors (OTFTs) are the technology of choice for flexible electronic devices (active matrix displays, wireless communication, smart tags, etc.)

BUT: Requirements for e.g., high resolution display driving are very demanding and cannot be fulfilled by today's OTFT technology

- Column drivers need to operate at 5...10MHz for 200ppi displays [1]
- Select transistor should turn on in less than 10ns (or transition frequency of >50MHz)

[1] Kubota et al., 10.1109/TED.2011.2175395
• Organic Thin-Film Transistors (OTFTs) are the technology of choice for flexible electronic devices (active matrix displays, wireless communication, smart tags, etc.)

• BUT: Requirements for e.g., high resolution display driving are very demanding and cannot be fulfilled by today’s OTFT technology

 • Column drivers need to operate above 10MHz for 200ppi displays [1]
 → fastest OTFT oscillator at 6.3MHz [2]

 • Select transistor should turn on in less than 10ns (or transition frequency of >50MHz)
 → fastest OTFT operates at 38MHz [3]

[1] Kubota et al., 10.1109/TED.2011.2175395
[2] Borchert et al., 10.1126/sciadv.aaz5156
Vertical Organic Transistors

- **Vertical Transistors (inspired by the triode approach)**
 - Ultra-short channel (<300 nm) and high gate control
 - Potential for reduced overlap capacitance
Vertical Organic Transistors

- **Vertical Transistors (inspired by the triode approach)**
 - Ultra-short channel (<300 nm) and high gate control
 - Potential for reduced overlap capacitance

- **Organic Permeable Base Transistor (a solid-state triode)**
Vertical Organic Transistors

- **Vertical Transistors** (inspired by the triode approach)
 - Ultra-short channel (<300 nm) and high gate control
 - Potential for reduced overlap capacitance

- **Organic Permeable Base Transistor** (a solid-state triode)
Organic Permeable-Base Transistors (OPBT)

- Base film is a 15nm thick aluminum film surrounded native Al_2O_3
- Strain-induced pin-hole formation during oxidation → 2...5nm pin-holes
- AlO_x quality can be improved by wet-chemical anodization, allows for thicker base layers, too. [5]

Organic Permeable-Base Transistors (OPBT)

- Base film is a 15nm thick aluminum film surrounded native Al_2O_3
- Strain-induced pin-hole formation during oxidation \to 2...5nm pin-holes
- AlOx quality can be improved by wet-chemical anodization, allows for thicker base layers, too. [5]

Organic Permeable-Base Transistors (OPBT)

- Excellent transistor performance, on/off 10^8, 60..90 meV/dec, transmission >99.9998%
- Current densities > 100 A/cm2 although mobility is only 0.06 cm2/Vs

Organic Permeable-Base Transistors (OPBT)

- Excellent transistor performance, on/off 10^8, 60..90 meV/dec, transmission >99.9998%
- Current densities > 100 A/cm² although mobility is only 0.06 cm²/Vs
- Max. current limited by SCLC

Organic Permeable-Base Transistors (OPBT)

- Using dynamic (time-resolved) measurements record transition frequency of 40MHz was obtained
- Even up to 100MHz possible (tool with higher output power required)

\[f_{\text{t}} \]

Schottky-Contacts in OPBTs

- **OPBTs have at least 3 Schottky-Contacts**
 - Injection electrode at the Emitter – Metal-C60 contact
 - Base-Electrode – Al-C60 contact
 - Ejection electrode at the collector – metal-C60 contact.
- **Schottky-Contact at Emitter and Collector are not desired** → possible source of contact limitation
Schottky-Contacts in OPBTs

- **OPBTs have at least 3 Schottky-Contacts**
 - Injection electrode at the Emitter – Metal-C60 contact
 - Base-Electrode – Al-C60 contact
 - Ejection electrode at the collector – metal-C60 contact.
- **Schottky-Contact at Emitter and Collector are not desired → possible source of contact limitation**
 - **Schottky-Contact at Emitter** electrode can be eliminated by n-type doping
 → e.g., W2(hpp)4 conductivity up to 10S/cm and chemical potential as close as 70meV to the LUMO
Schottky-Contacts in OPBTs

- **OPBTs have at least 3 Schottky-Contacts**
 - Injection electrode at the Emitter – Metal-C60 contact
 - Base-Electrode – Al-C60 contact
 - Ejection electrode at the collector – metal-C60 contact.

- **Schottky-Contact at Emitter and Collector are not desired → possible source of contact limitation**
 - **Schottky-Contact at Emitter** electrode can be **eliminated by n-type doping**
 → e.g., W2(hpp)4 conductivity up to 10S/cm and chemical potential as close as 70meV to the LUMO
 - However, n-type doping is difficult to use for the Schottky-contact at the collector (due to air exposure for base oxidaton)
 - Usually, Al would be a preferred electrode material due to matching work function, but Al forms AlOx at the interface
Schottky-Contacts in OPBTs

- **OPBTs have at least 3 Schottky-Contacts**
 - Injection electrode at the Emitter – Metal-C60 contact
 - Base-Electrode – Al-C60 contact
 - Ejection electrode at the collector – metal-C60 contact.
- **Schottky-Contact at Emitter and Collector are not desired → possible source of contact limitation**
 - **Schottky-Contact at Emitter** electrode can be eliminated by n-type doping
 → e.g., W2(hpp)4 conductivity up to 10S/cm and chemical potential as close as 70meV to the LUMO
 - **Cr/Al electrodes** are used instead of pure Al
 → oxidation of Al seen at the base electrode, **Cr does not oxidize easily**
 → Ohmic contact.
Schottky-Contacts in OPBTs

- In OPBTs, the current is limited by a space-charge-limited current and not by the resistance of the Schottky-Contacts nor the density of pinholes
- OPBTs are purely limited by the conductivity of the organic semiconductor and not the density or distribution of pinholes [8]

Schottky-Contacts in OPBTs

- Schottky-Contact at the base is the key for the high performance of OPBTs
 - In depletion, organic semiconductor is fully depleted → good off-state

\[E_F \]

\[\text{metal} \quad \text{insulator} \quad \text{n-type} \]

Depletion

![Graph showing capacitance vs. voltage for different i-C\textsubscript{60} thicknesses](image)

- Capacitance (nF/cm2)
- Voltage [V]
- i-C\textsubscript{60} thicknesses: 50 nm, 100 nm, 200 nm, 400 nm
Schottky-Contacts in OPBTs

- Schottky-Contact at the base is the key for the high performance of OPBTs
 - In depletion, organic semiconductor is fully depleted → good off-state
 - Very high capacitance in accumulation (~2µF/cm²) → high on-current density
 - Native Oxide + annealing → high-quality MOS interface with low defect density and good current blocking

![Diagram of Schottky Contacts]

![Graph of Capacitance vs Voltage]

\(E_F\)
metal
insulator
n-type
Al
AlO\(_x\)
C\(_60\)
Stability of OPBTs

- Quality of Schottky-Contact is important for device stability
- OPBTs only show significant bias-stress at elevated temperature (reversible) – but stress is not field, current or illumination driven

Double-Base OPBTs

- Even multiple base electrodes can be incorporated
- Each base has full control over the transistor function → can shift on- and off
- Turn-on voltage of Base1 can be tuned by Base2

![Diagram of Double-Base OPBTs](image)
Double-Base OPBTs

- Double-Base OPBTs used for logic gates (NAND, AND, NOT)
- Operation at <4V
- Operation at frequency >10MHz
- Fall and rise time <50ns
- Gain of unipolar circuit ~10

Double-Base OPBTs

- Double-Base OPBTs used for logic gates (NAND, AND, NOT)
- Connected with p-type OPBT
- Operation at <4V
- Operation at frequency >50MHz
- Fall and rise time <10ns
- Gain of complementary circuit ~25

Summary

- OPBTs are ultimate short-channel OTFTs and their function relies on 3 impact Schottky-Contact
- Ohmic Injection can be ensured using doping and proper choice of metals
- Al/C60 Schottky-Contact at the base is most important transistor operation
 - High accumulation capacitance \rightarrow high on-current
 - Low depletion capacitance \rightarrow high on/off
 - Low Defect density \rightarrow excellent device stability

Even multiple base electrodes might be incorporated into OPBTs
\rightarrow logic gates with high gain and high operation frequency fabricated
Thank you!

The ODS Group at IAPP
Thanks to Erjuan Guo, Felix Dollinger, Axel Fischer

&

Ghader Darbandy and Alexander Kloes from THM Giessen