Adopting the industry-standard CMOS models for Si Vertical Power MOSFETs

Lixi Yan, Ingmar Kallfass
29. Sept. 2020
Outline

• Background and Motivation
• Model Analysis
• Model description
  • IV characteristics
  • Capacitance model
  • Thermal model
• Parameter extraction
  • Device characterization
  • Parameter extraction result
  • Transient simulation
• Conclusion and Outlook
Background and Motivation

• Vertical power MOSFETs are widely used in switch mode power supplies which provide high power efficiency, but currently power MOSFETs lack the precise, robust and standardized compact models for circuit simulation.

• The custom models provided by device vendor often suffer from convergence problems and are often not compatible with all CAD simulation platforms.

• Operation conditions in switched-mode converters impose special requirements on model convergence.

• For CMOS logic devices, standard models exist, which proven to be accurate and robust.

• Conventional models cannot be directly applied to the specifics of vertical power MOSFETs.
Outline

• Background and Motivation

  Model Analysis
  • Standard models overview
  • Requirement Analysis

  Model Description
  • IV characteristics
  • CV characteristics
  • Thermal model

  Parameter Extraction
  • Device Characterization
  • Parameter extraction result
  • Transient simulation

• Conclusion and Outlook
Standard model overview

- BSIM3
  - Published by the University of California at Berkeley
  - Threshold based model
  - Scalable with dependencies of important device dimensions and process parameters
  - Public model
  - Industry-standard MOSFET model
  - Developed for deep-submicron digital and analog circuit designs

- EKV2.6
  - Initialized by CEH (Centre Electronique Horloger, now CSEM) and EPFL
  - Charge-based model
  - Scalable compact model derived from fundamental physical properties of the MOS device structure.
  - Available as in FOSS tool coded in Verilog-A
  - De-facto MOSFET standard model
  - Dedicated to the analog/RF IC designs using submicron CMOS technologies
Power MOSFET Model Requirement

- Industry standard model
- Physics-Based derivation
- Unified I-V expression

Some special extensional settings need to be developed considering the specific structure of power MOSFETs.

Some standard model parameters need to be deactivated to account for the different behavior of power devices.

The significant advantages for which standard models were designed should be preserved.
Outline

• Background and Motivation

Model Analysis
- Standard models overview
- Requirement Analysis

Model Description
- IV characteristics
- Capacitance model
- Thermal model

Parameter Extraction
- Device Characterization
- Parameter extraction result
- Transient simulation

• Conclusion and Outlook
Adopting BSIM 3 model

- Considering the resistance coming from the drift region for the current going through the channel and via the junction can be different owing to their different current paths, an individual drift resistor $R_{dbd}$ is defined for the body-diode which is different from the drift resistance $R_{dch}$ for the channel current.

- The parameter extraction result shows that the individual drift resistance is able to describe the reverse current well.

The structure of a vertical trench power MOSFET with the extended model structure [3]

In BSIM3 a smoothing function $V_{dseff}$ is used to link the linear region and saturation region with an extracted parameter $\delta$.

$$V_{dseff} = V_{dsat} - \frac{1}{2} \left( V_{dsat} - V_d - \delta + \sqrt{(V_{dsat} - V_d - \delta)^2 + 4\delta V_{dsat}} \right)$$

- When the value of $\delta$ increases, it is able to describe the drift resistance behavior of power devices.
IV characteristics in reverse operation
Adopting BSIM 3 model

- The body bias effects need to be defined in power MOSFET models

- Threshold voltage definition in BSIM3:

\[ V_{th} = V_{th0} + k1 \left( \sqrt{\Phi_S - V_{bs}} - \sqrt{\Phi_S} \right) - K2V_{bs} \]

In vertical structure

\[ V_{bs} = 0 \]

Vds<0

\[ V_{bs} \Rightarrow V_{bd}, \quad V_{bd} \neq 0 \]
The structure of a vertical trench power MOSFET with the extended EKV2.6 model structure

- For power MOSFETs, EKV 2.6 model is used to describe the intrinsic channel behavior. A drift resistance model simplified from the EKV-HV [5] model needs to be used for the nonlinear drift region.

\[ R_{\text{drift}} = R_0 \cdot \left(1 + \left(\frac{V_{\text{drift}}}{V_{\text{SAT}}}\right)^{\alpha_{\text{vsat}}}ight) \]

- This phenomenon can be described by using the body effect parameter GAMMA and the bulk Fermi potential PHI introduce the substrate potential effect on the threshold voltage in reverse operation.

\[ V_{TH} = V_{TO_a} + \Delta V_{RSCE} + \gamma' \cdot \sqrt{V'_S - \text{GAMMA}_a \cdot \sqrt{\text{PHI}}} \]
Capacitance model

CV characteristics

Parasitic capacitance modeling in BSIM3 and the structure in power MOSFET

Capacitances structure defined in BSIM3 [4]

Power MOSFET parasitic capacitance structure [6]

Capacitances structure defined in EKV2.6 [7]
Drain-gate capacitance definition in power MOSFET

Capacitances within the power VD-MOSFET structure [2]

\[ C_{GD,sp} = \frac{C_{OX}C_{S,M}}{C_{OX} + C_{S,M}} \]

\[ C_{S,M} : \text{Semiconductor capacitance under the gate oxide, defined in series with the capacitor of the gate oxide.} \]

\[ C_{S,M} = \frac{\varepsilon_s}{W_{D,MOS}} \]

According to the relationship between the electrical field in semiconductor and depletion layer width[2], we have:

\[ W_{D,MOS} = \frac{\varepsilon_s}{C_{OX}} \left( \sqrt{1 + \frac{2V_D C_{OX}^2}{q\varepsilon_s N_D}} - 1 \right) \]

\[ C_{GD} = C_{OX}(1 + \frac{2C_{OX}^2}{q\varepsilon_s N_D} \cdot V_D)^{-\frac{1}{2}} \]

\[ C_{DG} = C_{OX}(1 + C_q \cdot (V_{DG} - V_{fb})^{Nc}) \]
Transient model for Reverse Recovery of Body-diode

Diffusion capacitance defined by the stored charge model:

- Stored charge model is a simple lumped charge control model

Carrier distribution profile changing with time [8]

\[ Q = \tau \left[ I_d - \nu \frac{dQ}{dt} \right] \]

\[ I_d = \frac{Q}{\tau} + \nu \frac{dQ}{dt} \]
Thermal model

Temperature dependence defined in BSIM3 [4]

\[ V_{th}(T) = V_{th}(T_{\text{norm}}) + \left( K_{T1} + \frac{K_{T1l}}{L_{\text{eff}}} + K_{T2} \cdot V_{bseff} \right) \left( \frac{T}{T_{\text{norm}}} - 1 \right) \]

\[ \mu_0(T) = \mu_0(T_{\text{norm}}) \left( \frac{T}{T_{\text{norm}}} \right)^{\mu_{te}} \]

\[ U_a(T) = U_a(T_{\text{norm}}) + U_{a1} \left( \frac{T}{T_{\text{norm}}} - 1 \right) \]

\[ \text{vsat}(T) = \text{vsat}(T_{\text{norm}}) - A_T \left( \frac{T}{T_{\text{norm}}} - 1 \right) \]

Temperature dependence for drift resistance [10]:

\[ R_{\text{drift}}(T) = R_{\text{drift}}(T_0) \left[ 1 + \alpha (T - T_0) + \beta (T - T_0)^2 \right] \]

Temperature dependence defined in EKV 2.6 [9]

\[ VTO(T) = VTO - TCV \cdot (T - T_{\text{ref}}) \]

\[ KP(T) = KP \cdot \left( \frac{T}{T_{\text{ref}}} \right)^{BEX} \]

\[ UCRIT(T) = UCRIT \cdot \left( \frac{T}{T_{\text{ref}}} \right)^{UCEX} \]

Dynamic thermal model modification:

\[ T = V(T_{j}) \]
Outline

• Background and Motivation

Model Analysis
- Standard models overview
- Requirement Analysis

Model Description
- IV characteristics
- Capacitance model
- Thermal model

Parameter Extraction
- Device Characterization
- Parameter extraction result
- Transient simulation

• Conclusion and Outlook
Device Characterization

Static IV and parasitic capacitance

- The static IV characteristics are measured at different case temperature.
- Considering the frequency dependency, the 2-port S-Parameter measurement [11] is carried out for the capacitance measurement.
Device Characterization

Transient Reverse Behavior

- Double pulse test to analyze the reverse recovery behavior of the device body diode

Sketch of the DPT measurement setup[12]
IV Parameter extraction result

Adopting BSIM 3 for channel

Adopting EKV 2.6 for channel
IV Parameter extraction result

The reverse IV parameters are also extracted, which involving the static diode model and the channel model considering body effect.
CV and reverse transient parameter extraction result

Extended EKV 2.6

- The simulated capacitances at 1MHz are compared with the measurement with constant Vgs and sweeping Vds.

Extended BSIM3

- The parameters of the diffusion capacitance model are extracted based on the DPT transient measurement at 10.8 A, 14.8 A, and 18.6 A forward current.
Standard model extension for power MOSFETs
Adopting BSIM 3 and EKV 2.6

<table>
<thead>
<tr>
<th>Extension requirement</th>
<th>BSIM 3</th>
<th>EKV 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift resistance</td>
<td>A constant resistor</td>
<td>A voltage dependent resistor</td>
</tr>
<tr>
<td>Overlap capacitance</td>
<td>Cgd</td>
<td>Cgs, Cgd, Cds</td>
</tr>
<tr>
<td>Body-diode</td>
<td>Diffusion capacitance for RR</td>
<td>Static definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diffusion capacitance for RR</td>
</tr>
<tr>
<td>Thermal</td>
<td>Dynamic setup</td>
<td>Dynamic setup</td>
</tr>
</tbody>
</table>

Number of extracted parameters | 41 | 24
Conclusion and Outlook

• The industry-standard models BSIM 3 and EKV 2.6 are able to be adopted with dedicated extensions to describe vertical structure Si power MOSFETs.

• In terms of the drift resistance, parasitic capacitance and reverse transient behavior of power MOSFETs, the proposed extended models are able to describe the device performance precisely.

• According to different definitions of the core model, different extension strategies need to be used. They can be appropriately applied considering the particular application conditions and requirements.

• The model can be improved to describe the Vgs dependent capacitance for a more precise description of the dynamic behavior.

• The model can be further modified to apply to a wider range of power MOSFETs e.g Super-junction devices, SiC power MOSFETs etc.
Reference


Thank you!

Lixi Yan

e-mail lixi.yan@ilh.uni-stuttgart.de
phone +49 (0) 711 685-68607
www.ilh.uni-stuttgart.de/

University of Stuttgart
Institute of Robust Power Semiconductor Systems
Pfaffenwaldring 47 70569 Stuttgart