Modeling and Parameter Extraction of SiGe HBTs at Cryogenic Temperatures using Open-Source Tools DMT and VerilogAE

X. Jin, M. Müller, M. Krattenmacher, P. Kuthe, C. Weimer and M. Schröter

Chair for Electron Devices and Integrated Circuits
TU Dresden, 01062 Dresden, Germany
SemiMod GmbH, 01159 Dresden, Germany

MOSAK-China 2022,
Guangzhou, on August 11th, 2022

xiaodi.jin@tu-dresden.de
OUTLINE

• Introduction, device and measurement set-up

• Transfer current of SiGe HBTs at cryogenic temperature

• Parameter extraction tools: DMT and VerilogAE

• Conclusions
Introduction, device and measurement set-up
Motivation

• Silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technology has achieved $f_T > 500$ GHz for industry prototyping processes

• BiCMOS technology has enabled commercial and emerging mm- and sub-mm-wave system-on-chip applications

• many applications can benefit from operating electronic circuits and devices at cryogenic temperatures (CTs):
 • space exploration
 • material physics and chemistry
 • satellites (e.g. for providing world-wide access to the Internet)
 • quantum computing

• SiGe HBTs have been demonstrated to operate at CTs with superior performance compared to room temperature => high speed can be traded in for lower noise and energy efficiency

 =>$\text{attractive technology for cryogenic applications}$

• Circuit design at cryogenic temperatures requires accurate compact model
Status of SiGe HBT modeling for low temperatures

• Process design kits (PDKs) for cryogenic circuit design still not available
 - need to extend ALL device models to cover low temperature operation

• Challenges for semiconductor foundries:
 • - significant (additional) measurement effort, lack of cryo equipment
 • - need to extend compact models for all devices (actives and passives)
 • - reliance on standard models for transistors

• HBT mainstream [standard] models used by foundries: [HICUM, MEX-TRAM], SGP, VBIC
 • - VA uses the same EC/models for large and small signal
 • - All compact models: main current and charge formulations based on drift-diffusion (DD) transport

=>present HBT compact models miss physics of low temperatures, especially tunneling current
Status of SiGe HBT modeling for low temperatures

• Attempts of modeling SiGe HBTs at low temperatures so far:
 • Standard SGP with an extension: fit DC down to 78 K (old SiGe tech.) [1]
 • MEXTRAM with an extension: fit DC down to 43 K, and AC down to 93 K (old SiGe tech.) [2]
 • small-signal EC: fit measurement at CT only for single T and single operating point (advanced SiGe tech.) [3]
 • HICUM/L0 (advanced SiGe tech.): fit of existing parameters to cryo data at 12 K [4]
 • HICUM/L2 (advanced SiGe tech.): extension by empirical formulations and parameters fit DC and AC data from 4.3 to 298 K [5]

=>focus here: large-signal compact HBT modeling for “cryogenic” PDK base on HICUM/L2 v3.0.0

<table>
<thead>
<tr>
<th>Ref.</th>
<th>BiCMOS Tech.</th>
<th>f_T (GHz)</th>
<th>DC</th>
<th>AC</th>
<th>T scaling (K)</th>
<th>bias scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>0.25 μm</td>
<td>50</td>
<td>✓</td>
<td></td>
<td>78 to 300</td>
<td>✓</td>
</tr>
<tr>
<td>[2]</td>
<td>0.25 μm</td>
<td>50</td>
<td>✓</td>
<td>✓</td>
<td>43 to 393(DC)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93 to 383(AC)</td>
<td></td>
</tr>
<tr>
<td>[3]</td>
<td>0.13 μm</td>
<td>170</td>
<td>✓</td>
<td>✓</td>
<td>15, 40, 77, 120, 200, 300*</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>0.13 μm</td>
<td>260</td>
<td>✓</td>
<td>✓</td>
<td>12</td>
<td>✓</td>
</tr>
<tr>
<td>[5]</td>
<td>0.13 μm</td>
<td>300</td>
<td>✓</td>
<td>✓</td>
<td>4.3 to 298</td>
<td>✓</td>
</tr>
</tbody>
</table>

*The model parameters were optimized for each temperature, respectively.
Large-signal equivalent circuit of HICUM/L2

(physics-based geometry-scalable industry standard model [6])

=> each element to be investigated over a wide T range
Investigated devices

- IHP SG13G2 as well as two variants => tunneling characterization
- IHP D7 prototyping technology => modeling
 - with $(f_T, f_{\text{max}}) > (300, 500)$ GHz at room temperature
 - CBEBC configuration
 - $b_{E,\text{drawn}} = 0.13\,\text{um}$, $l_{E,\text{drawn}} = 10.16\,\text{um}$
- measurement results from 10 K to 473 K for HBT key characteristics
 - Forward, reverse gummel, output characteristics;
 - $I_{\text{BE}}, I_{\text{BC}}$
 - Cold S, Hot S parameter;
- all key characteristics shown for $V_{BC} = 0\,\text{V}$
Investigated devices

SiGeC HBT technology

production technology
$f_T = 200 \text{ GHz}, f_{\text{max}} = 275 \text{ GHz} [7]$

prototyping technology
$f_T = 500 \text{ GHz}, f_{\text{max}} = 700 \text{ GHz} [8]$

- doping concentrations
 - emitter, base, and buried layer highly doped \Rightarrow no freeze-out
 - internal collector: highly doped in high-speed HBTs \Rightarrow no freeze-out
 - internal collector: low/moderate in high-voltage HBTs, older technology \Rightarrow partial freeze-out
- base width: 25 nm ...12 nm \Rightarrow CE tunneling in advanced HBTs at low T
Measurement setup

• Electrical measurement equipment the same as at RT

• Differences compared to RT probe station:
 • vacuum chamber: <10^{-5} mbar, avoid air condensation, cryogenic probe station
 • vacuum pump: series connected diaphragm pump and turbo pump
 • cryogen, such as liquid helium (4 K) or liquid nitrogen (77 K)
 • dewar: container for cryogen
 • temperature controller: heat up the chuck
 • specialized DC and microwave probes
Measurement setup

Transfer current at cryogenic temperature
Existing compact model vs. measurements

- Low-temperature reduces kinetic carrier energy => lower diffusivity
- T decreases -> bandgap increases -> larger BE barrier (V_{DE}) prevents diffusion of electrons from E to C

 => much lower drift-diffusion current as observed in measurements

- GICCR (DD) vs. Meas
 - well agreement from 473 to 73 K
 - model underestimates meas. below 73 K

- Previous investigation (in base) for $T < 73$K:
 - low and medium current densities: tunneling [9]

- *No suitable physics-based tunneling current expression available for compact-models*
 - only qualitative discussions of experimental results and/or device simulations
Characterization of tunneling current

- Transfer characteristic (with different V_{BC} from -0.5 to 0.5 V) of three processes:
 - At 298 K (left figure), no obvious V_{BC} dependence of J_C at low and medium current densities;
 - At 4 K (medium figure), clear V_{BC} dependence of J_C at low and medium current densities due to tunneling current;
 - Ratio of J_C (right figure) with different V_{BC} shows the same trend:
 - At 298 K, ratio equals to 1
 - At CTs, ratio increases with reduced T
- Same process node (0.13um), but different tunneling current due to base doping concentration \Rightarrow different conduction barrier widths

J_C becomes significant at low and medium current densities at CTs
Potential barrier in base

• Left figure: Band diagram from TCAD simulation on similar profile at 30 K and different bias conditions
 • With increased V_{BE}, the conduction barrier in base becomes lower and narrower, which increases the tunneling probability
• Right figure: a schematic potential profile
 • Parabolic profile is used for analytical derivation of tunneling transmission factor
Compact model equation

• Transfer tunneling current is generally given by

\[J_{T_{tu}} = \frac{2q}{h^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} T_{tu} f_{nE}(1 - f_{nC}) v_x dp_x dp_y dp_z, \]

with \(f_{nE}(f_{nC}) \) as Fermi-function in the emitter (collector), and \(T_{tu} \) as tunneling transmission probability. Under several assumption

\[J_{T_{tu}} = c_{T_{tu},s} \int T_{tu} dW_x \text{ for } W_{b} \geq \Delta W_{E}. \]

compact model equation

\[J_{T_{tu}} = J_{T_{tu}S} \sqrt{v_b} \exp(-a_{T_{tu}} \sqrt{v_b}) \exp \left(\left(\frac{v_{th}(\Delta V_{E})a_{T_{tu}}}{\sqrt{v_b}} \right) - 1 \right), \]

Three model parameters required: \(J_{T_{tu}S} \), \(a_{T_{tu}} \) and \(\Delta V_{E} \), and \(v_b \) is given by

\[v_b = \frac{W_{b}}{q V_{DEi}^{\text{intrinsic}}} = 1 - \frac{V_{BE, \text{intrinsic}}}{V_{DEi}} = \left(\frac{C_{JEi}}{C_{JEi0}} \right)^{-\frac{1}{z_{Ei}}}. \]
Comparison between compact model and measurements

- Lines:
 - Blue short dashed lines: only tunneling equation implemented;
 - Red long dashed lines: only GICCR equation implemented, only low current densities related parameters are considered here, such as q_0 and h_{jei};
 - Black solid lines: both tunneling and GICCR equations implemented.
- Left figure: only analytical equations are compared with the measurements.
- Right figure: equations are implemented in HICUM, and compact model simulation results are compared with measurements. High current effect and emitter resistance are considered.
Comparison between simulation and measurements

- With consideration of tunneling current, HICUM shows good agreement with measured values over a wide temperature range from 10 K to 473 K.
- Agreement shows strong physical background of HICUM.
Extraction tools: DMT and VerilogAE
DMT Introduction

• Modeling engineers rely on proprietary and difficult to extend tools, often use self-maintained scripts
 • Best practices, employed in the software industry for decades, often ignored (CI, automated testing, build systems, documentation)
 • Proprietary tools intrinsically difficult to extend and not freely available

• The issues inflicted by this practice include [12]:
 • Analysis/visualization/generation of data becomes difficult to reproduce;
 • Engineers work far from their maximum work-efficiency, as they are hindered instead of empowered, by their software infrastructure;
 • Knowledge built-up over decades may be lost when engineers leave a company or institution.
Features of DMT

• Device Modeling Toolkit (DMT) helps to solve these issues. DMT provides a **Python library** that offers [12]:
 • Classes and methods relevant to commonly used device engineering tasks
 • Abstract base classes for implementing interfaces to simulators; concrete implementations for open-source simulators Ngspice (Vogt, 2022), Xyce (Keiter et al., 2014) or Hdev (Müller et al., 2022) available
 • Bulk measurement data processing and reading routines
 • Handling of compact models and modelcards

• Git-project: https://gitlab.com/dmt-development/dmt-core

• Employs best practices principles used in the software industry:
 • Continuous integration (CI), including automated testing
 • Extensive documentation in code and also on separate website: https://dmt-development.gitlab.io/dmt-core/installation/install_dmt.html

• Interfaces to proprietary simulators and par. extraction GUI **not open-source at this time**, available for partners upon request
OpenVAF and VerilogAE

- VerilogAE provides a Python interface for Verilog A source files [13]:
 - Evaluate model equations
 - Analyze structure of model equations
 - Generate derivatives of model equations
 - Modelcard generation

- VerilogAE uses OpenVAF as back-end for Verilog-A compilation:
 - Directly generates executable machine code
 - Ultra fast compilation without the need for another compiler (gcc)
 - Implements the language standard in a clear and unified way
 - Has great ux (error messages)
 - GPL license, commercial partners can request commercial license, software integration services into circuit simulators and support from SemiMod
 - Very likely the most advanced Verilog-A compiler available today

- All CMC models can be compiled, currently being implemented it into Ngspice (release planed for end of 2022)

- Git project: https://man.sr.ht/~ DSPom/openvaf_doc/verologae/
GUI of DMT

Here, you can export model card, plots, data etc. in the format that you want.

Equations for the Y variable in the plot

Model Parameters

Extraction Parameters

To extract the model parameters step by step, each pop-up menu presents the different groups of parameters.

The boundaries to define the regions of variables, like current to be optimized.

Optimizer Options
Conclusions

• Existing foundry PDK models unsuitable for cryogenic operation

• Standard HBT models need to be extended:
 • Capturing low-temperature physics
 • Mathematical conditioning of new formulations
 • Additional model parameters require parameter extraction (and extended methods)

• Physical-based compact formulation of tunneling current has been derived
 • Model verification on (preferably) a variety of HBT process technologies needs to be done
 • Requires (regular) cryogenic measurements at foundries!

 ⇒ clear direction for model development, but lot of work still ahead
 first version of cryogenic HICUM/L2 has been delivered to foundries for
 cryogenic design applications

• DMT and VerilogAE have been used for parameter extraction.
 • Very efficient tools for parameter extraction
 • Extraction steps for various technologies have been implemented and applied:
 • SiGe HBTs, III-V HBTs, FD SOI FETs and passives
 • HEMTs and others FETs will be developed upon request

 • Already applied to commercial processes technologies from Globalfoundries, Infineon
Acknowledgments

German National Science Foundation:

DFG SCHR695/16:
“Experimental characterization and modeling of 700 GHz Silicon-Germanium HBT technology from 10K to 475K”

DFG SCHR695/14:
“Modeling of non-linear large-signal dynamic effects in SiGe heterojunction bipolar transistors”
References

Thanks for your attention!

contact: xiaodi.jin@tu-dresden.de