TRAnspistor DIMensioning and CAiculation program

K.E. Moebus, M. Schröter, H. Wittkopf, Y. Zimmermann, M. Claus
Chair for Electron Devices and Integrated Circuits, TU Dresden
Outline

- Introduction
- Process Input
- Parameter Generation
- Predictive Modeling
- Statistical Modeling
- Device Sizing and Process Optimization
- Examples
Introduction - Motivation

• increasing demand for circuit performance
 ⇒ requires transistor operation close to process performance limit
 ⇒ careful circuit optimization through proper **transistor sizing**

• large variety of circuit applications
 ⇒ overall required number of transistor configurations is very large (>100)
 ⇒ need **geometry scalable compact models** and parameters

• large variety of bipolar processes require **sophisticated geometry scaling equations**
 ⇒ difficult to integrate
 ⇒ difficult to maintain
 ⇒ difficult to update

} in PDKs ⇒ use TRADICA instead
Introduction - Motivation

• reduce time-to-market: start circuit design during process development (concurrent engineering)
 ⇒ predicted but consistent model parameters and flexible parameter generation

• align process development with product (design) needs
 ⇒ quick evaluation of process change impact on device and circuit performance
 ⇒ allows fast decision making about suitable process

• include process tolerances in design
 ⇒ statistical simulation
 ⇒ matching simulation
Introduction – Basic Idea

• provide *criteria for transistor sizing*
 ⇒ calculation of device dimensions
 ⇒ calculation of device configuration

• provide fast means for generating *consistent sets of (compact) model parameters* based on design rules and process information

• provide compact models for various types of devices and applications
 – *different model types*
 • MOS (EKV)
 • Bipolar (SGPM, HICUM)
 • Passives (diode, res, mincap, …)

 – *model hierarchy => different complexities* w.r.t. physical effects
Introduction – Basic Idea

SGPM/Level2

HICUM/Level2

HICUM/Level4

HICUM/Level0

SGPM/Level0

© KEM, MS, YZ
Introduction – Basic Idea

- provide criteria for transistor sizing
- provide fast means for generating consistent sets of (compact) model parameters based on design rules and process information
- provide compact models for various types of devices and applications
 - different model types
 - model hierarchy => different complexities
- basic assumption: express the value Z of each element E_k in a compact model as function $Z(E_k) = f_k$ (voltage, current, junction temperature, transistor configuration, process data, design rules, tolerance data)
Process Input

• design rules
 – lateral dimensions defining the *transistor layout* of a given process
 – vertical dimensions

• specific electrical parameters
 – fixed for a given process
 – sheet resistances, contact resistances, zero-bias capacitances
 – can be obtained by measurement or calculation directly from process information
 ⇒ allows *fast predictive modeling for concurrent engineering*

• process tolerances
 – process control monitors (PCMs)
 – technology parameters (TPs)

• other process information, such as
 – smallest manufacturable (or guaranteed) emitter window dimensions
 – electromigration limits and BE contact metal pitch that affects linear scaling rules

• requirements for the “process-based scalable” approach:
 – process technology produces geometrically scalable transistor characteristics
 – employed compact models are sufficiently physics-based
Process Input

- Process tolerances
- Process specific parameters

Process Control Monitors (PCMs) - Technology Parameters (TPs)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{rsBi0}</td>
<td>0.154</td>
</tr>
<tr>
<td>r_{ciE10}</td>
<td>0.07</td>
</tr>
<tr>
<td>r_{ciE0}</td>
<td>0.07</td>
</tr>
<tr>
<td>r_{cjCi0}</td>
<td>0.046</td>
</tr>
<tr>
<td>r_{c1i}</td>
<td>0.371</td>
</tr>
<tr>
<td>r_{bEi}</td>
<td>0.3</td>
</tr>
<tr>
<td>r_{tbd}</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{NBEi}</td>
<td>0.05</td>
</tr>
<tr>
<td>r_{wb}</td>
<td>0.08</td>
</tr>
<tr>
<td>r_{NCi}</td>
<td>0.14</td>
</tr>
<tr>
<td>ΔV_{gm}</td>
<td>0.006</td>
</tr>
<tr>
<td>$\Delta bE0$</td>
<td>0.02</td>
</tr>
<tr>
<td>$\alpha(rSbi)$</td>
<td>0.003</td>
</tr>
<tr>
<td>$\alpha(rSsp)$</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

Design Rules

- Predictive modeling
- Parameter generation
- Device sizing
- Process optimization
- Statistical modeling

TRADICA
Parameter Generation

- parameter generation is based on process information and transistor configuration

- geometry scaling equations for each equivalent circuit element

- generate consistent sets of geometry scalable compact model parameters for any desired transistor configuration, based on ONE set of process information ⇒ simplifies PDK development and delivery

+ process information

+ transistor configuration

- number of base, collector, emitter contacts
- emitter window dimensions
- contact configuration (e.g. collector location)
Predictive Modeling

Purpose: provide (quantitative) information on how process changes impact electrical device and circuit performance

Assumption: “large-signal” variations from (targetted) “nominal” values can be significant

• process-based scalable approach already provides dependence of model parameters on PCMs and layout information

• TRADICA’s “prediction module” contains:
 – accurate (lateral) *geometry scaling equations* correlating model parameters to large variations in transistor configuration
 – can be based on either **PCM or TP input**
 – *correlation* between model parameters

• bias and temperature dependent compact model equations
 ⇒ transistor sizing, output of bias and FoM information, bias and frequency sweeps
Statistical Modeling

purpose: provide (quantitative) information on how process tolerances impact device and circuit yield

assumption: tolerances can be considered as “small-signal” deviations from nominal values

- based on PCM input, such as sheet resistances and capacitances per unit area (capacitance data is mandatory for high-speed processes and applications)
- **correlation** of model parameters through TPs
- calculations based on *relative changes w.r.t. “nominal” values* (except for dimensions) and include physical effects
- procedure for generating **statistical information on PCMs / FoMs** ⇒ high-frequency S- or Y-parameters for verification purposes
Statistical Modeling

- usually, only a subset of all TPs is relevant for a particular design
 ⇒ identifiable via sensitivity analyses
 ⇒ strong reduction of simulation runs

- full-scale statistical simulation based on
 - PCM or TP input
 - Design of Experiment
 - Response Surface Method

- generation of skewed parameter sets

- determination of worst/best corner-case parameter sets for given device/circuit figures of merit

© KEM,MS,YZ
Device Sizing and Process Optimization

• device sizing
 – calculates optimum device dimensions / configuration based on user selected FoM
 – optimization of one or several FoM at once
 – search for specific FoM value, e.g. $Z_{\text{IN}}=50\Omega$
 – designed for high-dimensional optimization
 – analytical equations for circuit FoMs

• process optimization
 – calculates optimum TPs
 – provides quick overview on influence of process changes on device/circuit FoMs early in process development
 ⇒ fast w.r.t. TCAD simulations (orders of magnitude)

© KEM, MS, YZ
Examples

• teaching

model element values and FoMs vs. geometry, bias, frequency and temperature

• statistics

no correlation – NOT physical

influence of correlation on statistical simulation results

with correlation

© KEM, MS, YZ
Examples

Transimpedance Amplifier (TIA)
first production design by Atmel

- sensitivity analysis
 ⇒ identify nbei
- TIA process variation (nbei)
 - $\mu = 244.3 \text{ mV}$
 - $\sigma = 25.5 \text{ mV}$

DC Offset
Examples

Transimpedance Amplifier (TIA) redesign

- process variation analysis
 - $\mu=0.1$ mV
 - $\sigma=1.1$ mV

\Rightarrow significant yield improvement
\Rightarrow experimentally confirmed, also for other circuits and process technologies

Examples
Conclusion

• generation of consistent sets of geometry scalable model parameters
 ⇒ more efficient (time / cost) than the “single transistor fitting” approach
 ⇒ faster and more accurate parameter determination
 ⇒ PDKs are much easier to generate and deliver

• generation of predictive parameter sets
 ⇒ concurrent engineering (e.g. reduction of design cycles, time-to-market)

• statistical simulation and modeling capability
 ⇒ generation of skewed parameter sets
 ⇒ full-scale statistical simulations
 ⇒ determination of worst/best corner-case parameter sets

• generic optimization algorithms are available
 ⇒ device sizing
 ⇒ process optimization