MOSFET mismatch characterization made easier: A 2-Transistor test array structure for a voltage-only measurement approach

Juan Pablo Martinez BRITO*, Sergio BAMPI** *IMPINJ Brazil **Federal University of Rio Grande do Sul (UFRGS)

Let's start backwards...

Traditional Method - Mismatch evaluation

requires to be measured with a high precision test equipment.

noisy values due to math (derivatives and/or divisions, etc)

long time due to its complexity.

Variability Classification

- Systematic behavior.
- Independent on device size.
- Handled by fab process control.

- $\circ~$ Random in nature.
- Dependent on device size.
- Random effects are harder to control on the manufacturing side

Major sources of local variations in a bulk MOSFET

Other sources of variability: Oxide thickness variation (OTV), Free charge trapping/detrapping, etc.

Pelgrom Model

The standard deviation of the mismatch of a generic parameter P ($\sigma(\Delta P)$) is linearly and directly proportional do the square root of the area (1/ \int (WL)).

PELGROM, Marcel et al. Matching properties of MOS transistors. **IEEE Journal of solidstate circuits**, v. 24, n. 5, p. 1433-1439, 1989.

Key transistor parameters for mismatch modeling

The major keys parameters affected by transistor mismatch are:

- Threshold voltage (V_{TH})
- Current factor ($\beta = \mu_0 CoxW/L$)

$$\sigma^2 \left(\frac{\Delta I_{DS}}{I_{DS}} \right) = \sigma^2 \left(\frac{\Delta \beta}{\beta} \right) + \left(\frac{gm}{I_D} \right)^2 \cdot \sigma^2 (\Delta V_{TH})$$

General MOSFET current mismatch model for all regions of operation

Challenges in MOSFET Mismatch Measuremen

Measuring MOSFET mismatches requires:

- ✓ Long Testing Times
- \checkmark Large I_D vectors for several biases
- ✓ Large Number of Samples
- ✓ Lots of Data Post-processing
- ✓ Test Equipment High Accuracy.
- ✓ Design of Special Test Structures

Hence a NEW TEST STRUCTURE and MEASUREMENT METHODOLOGY is required in order to obtain fast process variability data with reliable results.

A mandatory need to support the introduction of new devices in new process nodes.

Related work

Test structures based on a pre-configured circuit for indirect measurement

The inspirational paper (JJAP 2008)

Japanese Journal of Applied Physics Vol. 47, No. 6, 2008, pp. 4480-4486

©2008 The Japan Society of Applied Physics

Commonly used in Analog IC circuits as:

Test Circuit for Evaluating Characteristics Mismatch in Metal–Oxide–Semiconductor Field-Effect Transistor Pairs by Estimating Conductance Variation through Voltage Measurement

Mamoru TERAUCHI* and Kazuo TERADA

 \succ VPTAT generator,

> High output

A procedure is described for evaluating characteristics mismatch in a pair of metal-oxide-semiconductor field-effect transistors (MOSFETs), which are nominally designed to be identical. This procedure is based on conductance variation estimation through voltage measurement. By measuring the gate voltage dependence of the voltage of the middle point of a MOSFET pair connected in series, various pieces of information on difference in characteristics (e.g., channel width transresistance, difference and threshold voltage difference) in the MOSFET pair can be extracted. The applicability of the proposed procedure to fabrication process monitoring is also described and the principle of a suitable test circuit structure is illustrated.

KEYWORDS: MOSFET pair, conductance measurement, characteristics mismatch, fabrication process monitor

Faculty of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan

(Received October 7, 2007; accepted February 7, 2008; published online June 13, 2008)

\succ VREF generator,

Even for Automatic analog circuit generation!

1. Introduction

[DOI: 10.1143/JJAP.47.4480]

There are many circuit blocks such as sense amplifiers utilized in dynamic random access memories and crosscoupled inverter pairs consisting of static random access memory cells that require the precise matching of characteristics of their circuit elements. Among them metal-oxidesemiconductor field-effect transistors (MOSFETs) are of utmost concern, since the fluctuation of their characteristics becomes significant as their nominal size decreases. This is because the fluctuation of their characteristics originates mainly from the spatial distribution of impurity atoms in the gate depletion layer, which is determined by stochastic processes.¹⁻⁴⁾ That is, this type of characteristics fluctuation cannot be controlled in principle, and frequently referred to as "random characteristics variation". On the other hand it is

*MOSFET stacked-pair test structure

Fig. 1. Circuit diagram of test circuit composed of two MOSFETs (namely, M1 and M2) connected in series. These two MOSFETs have one body terminal in common to form the V_{BODY} terminal, with both gate terminals connected to each other to form the V_G terminal. The drain of M1 is connected to the source of M2, forming the V_{MID} terminal. The source of M1 is designated as the SD1 terminal while the drain of M2 is

Terauchi & Terada method

EKV MOS Transistor Test Structure Modeling

$$\begin{aligned} & \mathbf{from EKV model } I_D = I_S.e^{\frac{V_P}{V_T}} \cdot \left[e^{\frac{-V_S}{U_T}} - e^{\frac{-V_D}{U_T}}\right]; V_P \approx \frac{V_G - V_{TH}}{\eta}; I_S = 2\eta\beta U_T^2 \\ \text{where } \eta \text{ is the slope factor, } \beta = \mu_0 C_{ox} W/L \cdot V_P \text{ is the pinch-off voltage}, V_{TH} \text{ is the threshold voltage}. \\ \text{Assuming that the current is the same in forward and reverse modes} \\ \hline \text{Weak Inversion} & I_{SD} = -I_{DS} & \text{Strong Inversion} \\ I_{S1:e^{\frac{V_D}{V_T}}} \cdot \left(1 - e^{\frac{-V_{MDD}}{U_T}}\right) = I_{S2:e^{\frac{V_D}{V_T}}} \cdot \left(1 - e^{\frac{-V_{MDD}}{U_T}}\right) \\ \hline \left(\frac{I_{S2}}{I_{S1}}\right) \cdot e^{\left(\frac{V_{D2}-V_{P1}}{U_T}\right)} = \frac{\left(1 - e^{\frac{-V_{MDD}}{U_T}}\right)}{\left(1 - e^{\frac{-V_{MDD}}{U_T}}\right)} & \stackrel{W_{MDD}}{=} V_{MIDT} = V_{MIDT} | = R_{wi} \\ in(R_{wi}) = ln\left(\frac{\eta_E}{\eta_1}\right) + ln\left(\frac{\beta_2}{\beta_1}\right) + \frac{1}{U_T} \left[\frac{V_G(\eta_1 - \eta_2)}{\eta_1 \cdot \eta_2} + \frac{\eta_2 V_{TH1} - \eta_1 V_{TH2}}{\eta_1 \cdot \eta_2}\right] \\ IF \eta_2 = \eta_1 = \eta & In(R_{wi}) = ln\left(\frac{\beta_2}{\beta_1}\right) + \left(\frac{\Delta V_{TH}}{\eta U_T}\right) \\ e_{approximated to} In(R_{wi})n \approx \left(\frac{\Delta V_{2H}}{\eta U_T}\right) \\ \hline \text{Kat solved iteratively} \end{cases} \end{aligned}$$

Addressable test structure circuit integr

Same bias/switching scheme principle as used in : (AGARWAL et al., VLSI Symp 2006)

Measurements of ln(V_{MIDratio}) versus V_G

Can we extract ΔV th & ΔB eta variability separately from this curve? Answer: LINEAR REGRESSION ANALYSIS

Single-Transistor Measurements

Linear Regression procedure

Correlation results - Strong Inversio

• Total

$$ln(R_{si}) = ln\left(\frac{\beta_2}{\beta_1}\right) + ln\left(\frac{V_G - V_{TH2}}{V_G - V_{TH1}}\right) \xrightarrow{\text{approx}} ln(R_{si})n = ln\left(\frac{\beta_2}{\beta_1}\right) @V_G = 912 \text{mV}$$

$$\left(\frac{\Delta\beta}{\beta}\right)Eq = \frac{\ln(V_{MIDratio})@V_{Gsi}}{\sqrt{2}.K_{\beta}}$$

In(VMIDratio)@VG=912mV

Correlation results - Weak Inversio

• Total

$$ln(R_{wi}) = ln\left(\frac{\beta_2}{\beta_1}\right) + \left(\frac{\Delta V_{TH}}{\eta U_T}\right) \stackrel{\text{approx}}{\longrightarrow} ln(R_{wi})n = \left(\frac{\Delta V_{TH}}{\eta U_T}\right) @V_G = 576 \text{mV}$$

Comparison of the 1/JWL plot

Brito, Juan Pablo Martinez; Bampi, Sergio. Two-transistor voltage-measurement-based test structure for fast extraction of MOS mismatch design parameters. In: 2019 IEEE 32nd International Conference on Microelectronic Test Structures (ICMTS). IEEE, 2019. p. 114-119.

Linear regression determined separately for each same-size transistor matrix

1,10

1,20

Linear regression determined separately for each same-size transistor matrix

matrix	W [nm]	L [nm]	I. [nm]	W [nm] L [nm]	[nm] L [nm]	I. [nm]	Y-fun	nction		ELR method				Y-function		ELR method		Ky Ka	K _V	Ka
maura	w [init]		V_{Gwi} [mV]	V_{Gsi} [mV]	V	′ _{Gwi} [mV]	V_{Gsi} [mV]	S_{wi}	S_{si}	S_{wi}	S_{si}	TV_THy	Πβy		VTHg	nøg			
1	600	60	528	972		576		336	1.511	0.423	0.465	-12.27	46.38	0.423		14.27	-12.27			
2	240	60	492	948		600		1152	1.664	0.576	0.409	0.37	51.10	0.576		12.55	0.37			
3	360	60	516	984		600		120	1.511	0.474	0.401	-10.36	46.40	0.474		12.31	-10.36			
4	120	60	468	936		576		1200	1.735	0.652	0.442	0.54	53.27	0.652		13.57	0.54			
5	720	60	516	972		576		288	1.730	0.425	0.486	-15.59	53.11	0.425		14.94	-15.59			
6	1200	60	528	876		552		300	1.630	0.527	0.533	-13.60	50.03	0.527		16.37	-13.60			
7	120	90	480	936		576		1200	1.487	0.650	0.392	0.62	45.67	0.650		12.03	0.62			
8	120	120	456	912		516		1200	1.466	0.687	0.500	0.70	45.02	0.687		15.36	0.70			
9	720	180	504	948		552		1200	1.484	0.555	0.495	0.41	45.57	0.555		15.20	0.41			
10	600	600	492	972		552		1200	1.195	0.604	0.409	0.38	36.70	0.604		12.54	0.38			
11	360	180	492	924		564		1188	1.388	0.599	0.422	0.48	42.60	0.599		12.94	0.48			
12	360	90	516	924		600		324	1.537	0.593	0.397	-11.24	47.20	0.593		12.18	-11.24			
13	1200	120	516	948		552		408	1.631	0.439	0.523	-13.82	50.09	0.439		16.06	-13.82			
14	120	600	432	948		492		1200	1.070	0.593	0.413	0.45	32.85	0.593		12.68	0.45			
15	120	300	456	900		528		1200	1.071	0.688	0.371	0.59	32.88	0.688		11.38	0.59			
16	120	180	456	900		516		1200	1.257	0.704	0.445	0.72	38.60	0.704		13.66	0.72			

FITTING CONSTANTS FOR EACH TRANSISTOR SIZE

Comparison of the 1/*JWL* plot

Brito, Juan Pablo Martinez; Bampi, Sergio. Two transistors voltage-measurement-based test structure for fast MOSFET device mismatch characterization. IEEE Transactions on Semiconductor Manufacturing, v. 33, n. 2, p. 166-173, 2020.

Heatmap comparison

Reproduces ΔV_{TH} and $\Delta B/B$ mismatch parameters separately and with the same geometrical space-distribution

Traditional Method										Proposed Method								
6	ΔV_{TH}										$ln(V_{Gwi})/K_{Vth}$							
¥,	8	7	6	5	4	3	2	1		7	8	7	6	5	4	3	2	1
8	1,70	-4,55	7,92	-7,76	7,40	-19,12	4,63	-6,84		8	3,99	-2,97	9,60	-11,42	3,31	-19,62	2,37	-7,94
7	-11,15	-12,54	-25,25	21,48	28,49	-1,70	-17,43	13,73	-	7	-7,79	-16,36	-26,26	19,44	30,05	-2,74	-14,16	15,19
6	25,76	-4,17	4,96	7,26	-3,40	-15,56	-2,54	-10,12		6	25,61	-2,65	7,73	9,84	-0,81	-13,30	-0,66	-11,85
5	24,17	2,55	13,73	6,00	12,70	7,45	-9,12	-4,01		5	25,70	2,51	9,13	5,52	10,70	4,20	-10,22	-3,08
4	6,47	1,42	-0,52	5,41	23,51	5,54	25,29	21,53	7	4	6,32	-1,64	-2,02	6,11	27,68	4,18	26,18	20,29
3	15,04	17,01	4,36	-9,51	-4,12	9,26	-8,92	-5,70	1	3	13,99	18,01	3,21	-9,13	-0,50	8,41	-10,82	-4,48
2	-2,07	4,47	-2,74	4,52	6,13	-7,61	1,86	16,56		2	-0,87	7,81	-0,26	3,62	6,64	-8,27	-3,26	18,13
1	7,47	-3,08	-4,36	-14,18	6,01	24,15	-9,36	-32,77		1	12,62	-1,17	0,32	-9,80	6,10	26,55	-8,50	-33,98
	$(\Delta \beta / \beta)$												ln	(V_{Gs})	$_{i})/K$	B		
.7	8	7	6	5	4	3	2	1		.7	8	3 7	6	5	4	3	2	1
8	0,7%	-1,0%	0,8%	-5,7%	-3,9%	-3,1%	-2,3%	-0,1%		8	0,8%	-1,5%	2,3%	-4,8%	-3,4%	-4,2%	-1,4%	-2,2%
7	0,6%	-1,7%	-1,6%	0,3%	2,0%	-2,4%	1,9%	1,3%		7	-0,2%	-2,1%	-2,0%	2,1%	5,6%	-1,3%	1,1%	2,5%
6	-0,5%	-2,4%	2,3%	2,9%	-0,5%	2,3%	1,5%	1,3%		6	1,0%	-1,3%	4,3%	4,8%	-0,5%	0,4%	1,3%	0,3%
5	-0,6%	1,4%	-3,3%	-0,5%	-2,6%	-1,3%	-3,4%	0,7%		5	1,1%	3,3%	-1,2%	2,5%	0,4%	-0,7%	-3,4%	0,6%
4	-1,6%	-1,5%	-1,3%	-0,6%	1,0%	-0,8%	-0,2%	-1,4%	4	4	0,0%	-0,1%	0,2%	-1,2%	2,1%	0,7%	2,7%	2,4%
3	-1,2%	0,9%	0,5%	-1,7%	2,0%	3,1%	-0,8%	0,3%	1	3	1,7%	2,3%	2,1%	-1,6%	0,9%	3,2%	-2,2%	-0,7%
2	-0,9%	-1,3%	0,7%	0,1%	-0,9%	-1,2%	-3,4%	0,9%		2	-1,6%	0,4%	0,9%	2,5%	-0,3%	0,0%	-4,0%	4,5%
1	0,7%	1,2%	1,5%	0,6%	0,7%	-0,8%	3,6%	0,3%		1	2,9%	2,9%	2,7%	-1,3%	1,3%	3,4%	4,3%	-1,0%

Increase of Measurement Speed

Using the traditional ELR method Which is a built-in function in B1500A Semiconductor Device Parameter Analyzer from Keysight Technologies

Real case comparison with data measurements

Ī	MOSFET Matrix	Start	End	Total	Seconds/Device	
Ī	2304 MOS Devices	18:59:19	04:39:23	33h40min04g	52 Ga	
	I_D - V_G curves, 101 points	30/11/2016	01/12/2016	33114011111048	52.08	> 52.6
Ī	Stacked-Pairs Matrix	Start	End	Total	Seconds/Device	$\frac{1}{2} = 23.71 x$
Ī	4096 Stacked-Pairs	16:44:10	19:19:31	0.0h 35 min 21 a	2.97_{\odot}	$\rightarrow 2.27$
	V_{MIDf} and V_{MIDr} , 2 points	26/08/2016	26/08/2016	02113511111218	2.218	

Reduction on the Measurement Setup

+ DC Supply1

)Voltmeter

REDUCTION OF EQUIPMENT COST AND TESTING TIME

Comparison against related work

	This work	[3]	[4]	[6]	[7]	[8]
Speed Increase	<u> </u>	-	5x	-	-	-
Process	65nm	65nm	65nm	130nm	45nm	-
Parameters	$V_{TH}\η$	V_{TH}	V_{TH}	V_{TH}	V_{TH}	$V_{TH}\η$
Number of device	4096	800	1024	256	138	512
Transistor sizes	$\bigcirc 16 \bigcirc$	3	no	no	no	3
Regression analysis	yes	no	no	no	no	no

[3] K. Agarwal et al., "Fast characterization of threshold voltage fluctuation in mos devices," IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 4, pp. 526-533, 2008.

[4] T.-C. Luo et al., "Fast transistor threshold voltage measurement method for high-speed, high-accuracy advanced process characterization," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 5, pp. 1138-1149, 2014.

[6] S. Mukhopadhyay et al., "Statistical characterization and on-chip measurement methods for local random variability of a process using senseamplifier- based test structure," in 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007, pp. 400-611.

[7] R. Rao et al., "A completely digital on-chip circuit for local-random variability measurement," in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International. IEEE, 2008, pp. 412-623.

[8] C. C. McAndrew et al., "A self-amplifying four-transistor mosfet mismatch test structure," IEEE Transactions on Semiconductor Manufacturing, vol. 26, no. 3, pp. 273-280, 2013.

Conclusions

- 1. A two-transistor test structure and a simple measurement methodology demonstrates high confidence values in order to extract MOSFET mismatch parameters.
- 2. MOS transistor mismatch parameters such as A_{Vth} and A_{B} can be extracted with an error less than 2%, for the same test die.
- 3. Two great advantages of the method: an increase of 25x in measurement speed and a simplified measurement setup.
- 4. The two-transistor test structure has been proven on its efficiency by Unear regression analysis.
- 5. An improved version of the test structure has been proposed and tested in order to allow distance related mismatch evaluation.

Acknowledgements

- My former company: CEITEC SA Semiconductors.
- My current company: IMPINJ Brazil.
- Scholarship Sponsors: CNPq, CAPES and FAPERGS.
- NSCAD/UFRGS for tool support.
- Silicon providers: MOSIS and Silterra.

List of Author's related publications

JOURNALS

- 1. Brito, Juan Pablo Martinez; Bampi, Sergio . Two Transistors Voltage-Measurement-Based Test Structure for Fast MOSFET Device Mismatch Characterization. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, v. 33, p. 1-1, 2020.
- 2. Brito, Juan Pablo Martinez; Bampi, Sergio . Local Variability Evaluation on Effective Channel Length Extracted With Shiftand-Ratio Method. IEEE TRANSACTIONS ON ELECTRON DEVICES, v. 67, p. 4662-4666, 2020.

CONFERENCES

- 1. Brito, Juan Pablo Martinez; Bampi, Sergio. Statistical Analysis of MOSFET extracted parameters for n-MOS mismatch modeling. 13th International MOS-AK Workshop; Silicon Valley, CA, Dec.10-11 2020
- 2. Brito, Juan Pablo Martinez; Bampi, Sergio. Two-transistor Voltage-Measurement- Based Test Structure for Fast Extraction of MOS Mismatch Design Parameters. In: 2019 IEEE 32nd International Conference on Microelectronic Test Structures (ICMTS), 2019, Kita-Kyushu City.
- 3. Martinez Brito, Juan Pablo; Lubaszewski, Marcelo ; Bampi, Sergio . Within-die and die-to-die variability on 65nm CMOS : oscillators experimental results. In: 2015 International Workshop on CMOS Variability (VARI), 2015, Salvador.
- Martinez Brito, Juan Pablo; Lubaszewski, Marcelo; Bampi, Sergio. MOSFET stacked-pair test structure for mismatch evaluation by estimating the on-resistance ratio. In: 2015 International Workshop on CMOS Variability (VARI), 2015, Salvador.
 - Brito, Juan Pablo Martinez; Bampi, Sergio. Estimation of Within-Die and Die-to-Die CMOS Variability Based on Ring Oscillators. IEEE/ACM ICCAD Workshop on Variability Modeling and Characterization (VMC). 2014. San Jose.

THANK YOU

Questions?

juanbrito@gmail.com