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Motivation



5

• Commercial CMOS technology has evolved throughout the 
years to now become the best alternative for many wireless 
applications.
• It's a mature, well understood, and inexpensive technology.
• MOS Transistors have been built to operate at frequencies of 

hundreds of GHz.
• With these, complex ICs have been designed and 

manufactured, allowing for more on-chip functions than ever 
before.
• This trend will continue for many years, even though we are 

reaching the physical limits of integration.
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M1 Microprocessor

• TSMC 5 nm
• Original M1 (2020): 16 billion 

transistors
• M1 Pro (2020): 34 billion 

transistors
• M1 Max (2021): 57 billion 

transistors
• M1 Ultra (2021):  114 billion 

transistors (two M1 Max)



7



8

See also: “Opening Terahertz for Everyday Applications”, K.O. Kenneth et al., IEEE Communications Magazine, 
August 2019, pp. 70-76.  DOI: 10.1109/MCOM.2019.1800909 
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“Terahertz Wireless 
Communications”, 
H.J. Song, IEEE 

Microwave Magazine, 
Vol. 22, No. 5, May 

2021, pp. 88-99. 
DOI: 10.1109/

MMM.2021.3056935
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• But CMOS ICs are not only made of transistors!
• To connect these, interconnect lines are necessary.
• To reach the external world, also.
• To implement filters, capacitors and inductors are needed.
• To convert voltages to currents, resistors are used.
• All these passive devices play an important role in circuit 

structure.
• In fact, in a complex IC, we might find hundreds of thousands 

of these.
• They all have an influence on the overall behavior of the 

circuit.
• Hence, they have to be studied, modeled, and characterized.
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The High Frequency Laboratory of INAOE

• For the last three decades, we have dedicated our research 
efforts to the modeling, measurement and characterization of 
active and passive devices used for wireless communications, 
mostly CMOS.

• But our work also involves HF effects on PCBs, antennas, and 
antenna arrays for communications and energy harvesting.

• Here we present just a few aspects of the work needed in this 
continuously expanding field of endeavor.
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MOS Transistor Compact 
Modeling
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The modeling of the MOS Transistor

• The MOS transistor is probably the most studied and modeled 
device by humankind.

• Models are defined by a slew of techniques, methods, 
approaches, basis, science, principles,…

• They can be physical, mathematical, electrical, empirical…

• But the best combinations are “compact models”, as they are 
physically based, intuitive, simple, and sufficiently accurate.
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• As fabrication processes evolve, smaller features are attained, 
more “second order” effects become present, higher 
frequencies are achieved; thus more complex models are 
needed.

• Therefore, the field of compact modeling is a dynamic research 
area, and it will continue to be so as long as fabrication 
technologies reach new frontiers.

• MOS-AK is a pioneer in the field of compact modeling, and as 
we see from the talks in this —and other issues of the workshop
— there is always something new under the sun.

• And in spite of having many books and journal articles on the 
field, we must continue delving deeper into the matter to 
advance the state-of-the-art.
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• The focus of this talk is highlighting some aspects of 
importance in the future development of CMOS compact 
modeling for high-frequency applications.

• These include a host of effects which have to be taken into 
account in order to design and simulate a circuit trustworthily.

• Furthermore, antennas have become commonplace in 
integrated circuits —antennas on-chip— and compact models 
for these have to be included in circuit simulators to effectively 
incorporate their effects during simulation.
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Inductors
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• Inductors are probably the most important passive devices used 
in radio frequency ICs.
• An important figure of merit for inductors is the Quality Factor 

(Q).
• The value of Q strongly depends on the losses associated with 

eddy-currents on the ground path.
• To reduce these losses, ground shields are used underneath the 

inductors.
• These can be solid (SGS) or patterned (PGS).
• Shields can be built with metal, polysilicon, or low resistivity 

buried layers.
• A variety of inductors, from IMEC, were available for this study.
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Micrograph of some of the fabricated inductors

“Modeling Ground-Shielded Integrated Inductors Incorporating Frequency-Dependent Effects and Considering Multiple Resonances”, J. 
Valdés, R. Torres, R. Murphy, G. Álvarez, IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, April 2019, pp. 1370-1378. 
DOI: 10.1109/TMTT.2019.2895579
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Schematic showing SGS and PGS 

“Modeling Ground-Shielded Integrated Inductors Incorporating Frequency-Dependent Effects and Considering Multiple 
Resonances”, J. Valdés, R. Torres, R. Murphy, G. Álvarez, IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 
4, April 2019, pp. 1370-1378. DOI: 10.1109/TMTT.2019.2895579
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Proposed Model

“Modeling Ground-Shielded Integrated Inductors Incorporating Frequency-Dependent Effects and Considering Multiple Resonances”, J. 
Valdés, R. Torres, R. Murphy, G. Álvarez, IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, April 2019, pp. 1370-1378. 
DOI: 10.1109/TMTT.2019.2895579
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“Modeling Ground-Shielded Integrated Inductors Incorporating 
Frequency-Dependent Effects and Considering Multiple Resonances”, 
J. Valdés, R. Torres, R. Murphy, G. Álvarez, IEEE Transactions on 
Microwave Theory and Techniques, Vol. 67, No. 4, April 2019, pp. 
1370-1378. DOI: 10.1109/TMTT.2019.2895579
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• An important factor taken into consideration for the model 
is the frequency dependence  of resistance and inductance:

• Thus, the skin effect is satisfactorily taken into account.
• Proximity effects are also considered.

Rind = Rind0 + ks f Lind = L∞ +
ks

2π f
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Interconnects
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• Interconnects are a fundamental element of any 
integrated circuit.
• These present transmission line effects when 

operating in high-frequency.
• As such, they have to be taken into 

consideration to account for signal delay and 
losses.
• As mentioned before, however, resistance and 

inductance are also frequency dependent.
• Furthermore, models can be made more 

complex to account for second-order effects. 
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A simple 
model 

neglecting the 
physical 
nature of 

interconnects.
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A somewhat more elaborate model considering 
interconnects and pads.
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A complete model including interconnects 
and pads

“Analytical Model and Parameter Extraction to Account for the Pad Parasitics in RF-CMOS”, R. Torres, R. Murphy, A. Reynoso,  IEEE Transactions on Electron Devices, Vol. 
52, No. 7, July 2005, pp. 1335-1342. DOI: 10.1109/TED.2005.850644
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Coplanar waveguides

“Determination of the Contribution of the Ground-Shield Losses to the Microwave Performance of On-Chip Coplanar Waveguides”, J. Valdés, R. Murphy, R. 
Torres, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, March 2021, pp. 1594-1601. DOI: 10.1109/TMTT.2021.3053548
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“Determination of the Contribution of the Ground-Shield Losses to the Microwave Performance of On-Chip Coplanar Waveguides”, J. Valdés, R. Murphy, R. 
Torres, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, March 2021, pp. 1594-1601. DOI: 10.1109/TMTT.2021.3053548
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“Determination of the Contribution of the Ground-Shield Losses to the Microwave Performance of On-Chip Coplanar Waveguides”, J. Valdés, R. Murphy, R. 
Torres, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, March 2021, pp. 1594-1601. DOI: 10.1109/TMTT.2021.3053548
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Input-output coupling for “short” lines (250 μm)

“Determination of the Contribution of the Ground-Shield Losses to the Microwave Performance of On-Chip Coplanar Waveguides”, J. Valdés, R. Murphy, R. 
Torres, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, March 2021, pp. 1594-1601. DOI: 10.1109/TMTT.2021.3053548
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• Current density substantially increases in the PGS at high frequencies.
• The impedance of the shield is reduced with frequency, forming a path 

in the direction of propagation. 
• This increases current flow through the shield, and promotes an 

undesired coupling of the CPW’s input and output ports.
“Determination of the Contribution of the Ground-Shield Losses to the Microwave Performance of On-Chip Coplanar Waveguides”, J. Valdés, R. Murphy, R. 
Torres, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, March 2021, pp. 1594-1601. DOI: 10.1109/TMTT.2021.3053548
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The effect is also a function of path 
separation (gap)

“Determination of the Contribution of the Ground-Shield Losses to the Microwave Performance of On-Chip Coplanar Waveguides”, J. Valdés, R. Murphy, R. 
Torres, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, March 2021, pp. 1594-1601. DOI: 10.1109/TMTT.2021.3053548
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Trough Silicon Vias (TSVs)

“Assessment of through-silicon-vias with different configurations of ground vias and accounting for substrate losses”, Y. Rodríguez, R. Murphy, R. Torres, 
International Journal of RF and Microwave Computer-Aided Engineering, July 2021, pp. 1-9. DOI: 10.1002/mmce.22811
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Trough Silicon Vias (TSVs)

“Assessment of through-silicon-vias with different configurations of ground vias and accounting for substrate losses”, Y. Rodríguez, R. Murphy, R. Torres, 
International Journal of RF and Microwave Computer-Aided Engineering, July 2021, pp. 1-9. DOI: 10.1002/mmce.22811
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Trough Silicon Vias (TSVs)

“Assessment of through-silicon-vias with different configurations of ground vias and accounting for substrate losses”, Y. Rodríguez, R. Murphy, R. Torres, 
International Journal of RF and Microwave Computer-Aided Engineering, July 2021, pp. 1-9. DOI: 10.1002/mmce.22811
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Multi-stacked chips

“Assessment of through-silicon-vias with different configurations of ground vias and accounting for substrate losses”, Y. Rodríguez, R. Murphy, R. Torres, 
International Journal of RF and Microwave Computer-Aided Engineering, July 2021, pp. 1-9. DOI: 10.1002/mmce.22811
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SPICE compatible model for interconnects to three 
chips, including solder bumps.

“Assessment of through-silicon-vias with different configurations of ground vias and accounting for substrate losses”, Y. Rodríguez, R. Murphy, R. Torres, 
International Journal of RF and Microwave Computer-Aided Engineering, July 2021, pp. 1-9. DOI: 10.1002/mmce.22811
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Model 
comparison to 
EM 
simulations 
and reported 
data.

“Assessment of through-silicon-vias with different configurations of ground vias and accounting for substrate losses”, Y. Rodríguez, R. Murphy, R. Torres, 
International Journal of RF and Microwave Computer-Aided Engineering, July 2021, pp. 1-9. DOI: 10.1002/mmce.22811

[29]  Lu KC, Horng TS, Li HH, Fan KC, Huang TY, Lin CH. Scalable modeling and wideband measurement techniques for a signal TSV 
surrounded by multiple ground TSVs for RF/high-speed applications. Proc 62nd Electron Comp Technol Conf. 2012; 1023-1026.



41

Antennas On-Chip
(On-Chip Antennas)
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IoT 
connected 
devices.
42.62 billion 
in 2022; 75.44 
billion 
predicted for 
2025.
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On-chip antennas
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On-chip antennas
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On-chip antennas
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On-chip antennas
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• As we see from the previous slides, on-chip 
antennas are a reality.
• As operating frequency increases, more 

design considerations have to be taken into 
account, principally signal integrity and 
electromagnetic compatibility;  these are 
difficult to include at circuit level.
• Thus far, antennas are designed “out-of chip”, 

and then incorporated to an IC.
• It is clear that there’s an evident need to have 

compact models for antennas that can be 
included as a part of the IC design and 
simulation process.

On-chip antennas
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“A novel metamaterial-based antenna for on-chip applications for the 72.5-81 GHz frequency range”, K. Olan, R. 
Murphy, Scientific Reports, Vol. 12, February 2022, pp. 1-9. DOI: 10.1038/s41598-022-05829-0
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Conclusion
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• The field of compact modeling grows in importance day by day, 
as ever more devices can be fit into an IC.
• Besides active devices, passive ones have to also be modeled in 

order to guarantee the correct response of the circuit, first at the 
simulation level, and then in practice.
• Good models also give insight into the physical behavior of the 

device, circuit or system.
• As technology progresses, the need for more sophisticated ICs 

arises.
• Thus, compact modeling continues to be a very fertile and 

promising field of endeavor.
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• Technological evolution has made it possible to include 
antennas on the same chip, covering a host of applications for 
wireless communications.
• The use of metamaterial properties is becoming the norm in the 

design and manufacture of on-chip antennas.
• These techniques make it possible to overcome the limitations in 

antenna design inherent to a silicon substrate.
• These facts reinforce the need for further development of 

compact models to include a slew of additional components to 
satisfactorily model, design, simulate and manufacture silicon-
based RF integrated circuits.



54

murphy@inaoe.mx
rmurphy@ieee.org

Thank you for 
your kind 
attention!
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