Current Developments for the Xyce Circuit Simulator

PRESENTED BY
Jason C. Verley & Eric Keiter
Why Develop an Analog Circuit Simulator at Sandia?
Why Develop an Analog Circuit Simulator at Sandia?

Commercial tools cannot simulate the high dose rate radiation environments that are Sandia’s primary concern.

A known, reliable code base, owned by Sandia
- Prompt response to internal needs
- Trusted code

Specialized compact models for radiation effects
- High-energy photons (X-rays and γ-rays)
- Neutrons

Simulation of entire systems
- Radiation effects are not isolated…
- Need massively parallel simulations
The Analog Circuit Simulator

Two versions, Serial and…

Distributed Memory Parallel (MPI-based)

Unique solver algorithms

Industry standard models

Non-traditional models

SPICE-Compatible syntax (Berkeley 3f5)

New Python interface PyMI

Open Source, GPLv3

- Since September of 2013 (Xyce 6.0)

Xyce Release 7.4

- October, 2021
- >7,600 external downloads since 6.0

http://xyce.sandia.gov

http://github.com/Xyce

Keiter, et al., “Parallel Transistor-Level Circuit Simulation”
Xyce Capabilities

Typical

DC, Transient, AC, Noise
- .DC, .TRAN, .NOISE, .AC (and .STEP)

Post Processing:
- Fourier transform of transient output (.FOUR)
- Post-simulation calculation of simulation metrics (.MEASURE)

Output (.PRINT)
- Text Files (tab or comma delimited)
- Probe (PSPICE)
- Gnuplot, TecPlot, RAW (SPICE 3f5)

Analog Behavioral Modeling

Expressions, functions, parameterizations…

Others

S-Parameter Analysis
- Touchstone file output

Harmonic Balance Analysis (.HB)
- Steady state solution of nonlinear circuits in the frequency domain

Random Sampling Analysis
- Executes the primary analysis (.DC, .AC, .TRAN, etc.) inside a loop over randomly distributed parameters

Polynomial Chaos Expansion (PCE) methods
- Functional dependence of a simulation response on uncertain model parameters

Sensitivity Analysis
- Computes sensitivities for a user-specified objective function with respect to a user-specified list of circuit parameters ($\partial O/\partial p…$)
Xyce-isms

Xyce is not a “plug in replacement” for any other simulator

• …but that’s like trying to hit an invisible moving target
• XDM netlist translator for syntax
• Feature compatibility is significant and improving
 • Still some expected features that we don’t yet support; e.g., .OP functionality is limited

Xyce defaults are conservative

• The industry standard is, “The simulator must never fail to provide an answer…”
 …even if it’s wrong.
• Xyce philosophy: provide a numerically accurate answer, and fail if asked to do something “wrong”
 • Continue to work to provide options that allow problematic circuits to simulate; but usually not on by default

Simulations in Serial vs. MPI Parallel

• Distributed parallelism can take more tuning than shared memory approaches…
 especially device distribution, and direct vs. iterative linear solvers.
• Very large parallel simulations are challenging (need to find the “right” linear solver)
• Leverages Sandia’s Trilinos High-Performance Computing (HPC) solver framework
Xyce Distributions

Binary installers (serial and parallel)
 ◦ RHEL 7
 ◦ Apple Macintosh
 ◦ Windows (serial only)
 ◦ Include proprietary compacts models and (eventually) other proprietary features, such as linear solvers
 ◦ http://xyce.sandia.gov

Source code
 ◦ http://xyce.sandia.gov
 ◦ http://github.com/Xyce

Building Xyce is not for the faint of heart
 ◦ …usually due to the third-party libraries
 ◦ Detailed build instructions on the website
 ◦ CMake improvements on the way
Xyce “in the Wild”

Note: Xyce is the simulator (like HSPICE, SmartSpice, Spectre, Eldo…)
 ◦ Sandia does not provide a Schematic Design/Capture front end, but…
 there are Qucs-S and gEDA integrations, and…

Typhoon HIL Schematic Editor
 ◦ Free (not open-source)
 ◦ Includes Xyce integration
 https://www.typhoon-hil.com/products/xyce-integration/
 ◦ Primary business is power system emulation, so the editor has a power/distribution emphasis

DARPA POSH/IDEA
 ◦ Develop an IC “Compiler”
 ◦ Open Source Hardware (POSH)
 ◦ Andreas Olofsson has a list of the projects at https://github.com/aolofsson
Simulator Compatibility and PDKs

Or, Recent Xyce Improvements
Most PDKs are written for commercial tools, using their syntax.

So, tool compatibility translates to PDK compatibility
 - Netlist syntax
 - Features

XDM – A Netlist Translator for Xyce
 - Support for
 - HSPICE
 - Spectre
 - PSPICE
 - 90% solution
 - Primarily limited by Xyce feature compatibility with the commercial tools
Xyce Support for PDKs

Some success with
- Global Foundries 65/55 nm
- Global Foundries 14/12 nm

Some known deficiencies:
- Multipliers ("M=") with subcircuits
- Verilog-A support
- TMI/OMI (required for TSMC PDK support)
- …others

Translation Procedure
- Pre-process the PDK using XDM
- Fix any remaining issues by hand (most, if not all, are known)
- Translate the netlist for the specific simulation, using XDM
 - Again, fix any remaining issues by hand
 - Some simulation-specific directives are not translatable

Primary Challenge: Foundries work with the EDA vendors to ensure the PDKs are “correct.” Without that relationship, we can only address issues as they come up.
SkyWater Open Source PDK

https://github.com/google/skywater-pdk

A collaboration between Google and SkyWater Technology Foundry
 ◦ Targets the SKY130 process node

As-released PDK targeted ngspice
 ◦ Many compatibility issues have been addressed
 ◦ Some reports that Xyce is faster than ngspice (related to parsing?)

Known remaining compatibility issues
 ◦ Multipliers ("M=") with subcircuits
 ◦ Device model enhancements (BSIM3, e.g.)
 ◦ Some HSPICE-like syntax incompatibilities
 ◦ Other smaller issues…

Unlike closed PDKs, we are able to work with the community to improve compatibility and performance.
Various Xyce Interfaces

Application Programming Interfaces (APIs)
- Mixed Signal
- Xyce General External Interface (C++)
- App Notes on the website

And…
Our goal is to enable ML advancements to impact design phases of electrical systems via data-driven compact device models.
Xyce-PyMi: Calling Python models from Xyce

- Leverages General External interface (C++) from Xyce, by Tom Russo
- Easily installable and callable capability for executing Python ML models in a production circuit simulation software (Xyce ↔ PyBind11)
- Actively engaged with compact model development groups and circuit designers at Sandia
- Provide data-driven compact device modeling approaches (GMLS, splines, deep neural networks)
Xyce-PyMi: Calling Python models from Xyce

How to call and specify device/subcircuit behavior

Xyce-PyMi
(Xyce + Python Model Interpreter)

• Full Xyce functionality + devices / subcircuits / circuits defined in Python
• Python class defines how F, Q, B, dF/dX, and dQ/dX vectors/matrices are populated for Xyce DAE equation:
 • residual = f(x,t) + dq(x,t)/dt - b(t)
• Supports all popular machine learning frameworks such as TensorFlow, Keras, PyTorch, Jax, Numba, Numpy, etc...

* example.cir (Example of easy inclusion in a netlist)
 YGENEXT devicename terminal1 terminal2
 + SPARAMS={NAME=MODULENAME VALUE=PythonDevice.py}

PythonDevice.py
import numpy as np
from BaseDevice import BaseDevice

class Device(BaseDevice):
 def computeXyceVectors(...):
 # definition of device in Python goes here
Examples of Xyce-PyMi usage

Operational Amplifier with BJTs

```
***************
* Netlist for Operational Amplifier
***************
VDD 1 0 DC 2.5
R1 1 4 1e4
R2 1 5 1e4
R3 6 0 5e3
C1 4 0 5e-12
C2 5 0 5e-12
YGENEXT pyQ1 4 7 6
  + SPARAMS={NAME=MODULENAME,DATAFILE.VALUE=../models/gmls_bjt_2N2222.py,/data/2N2222_alan.01.dat}
RQ1 7 2 50
YGENEXT pyQ2 5 8 6
  + SPARAMS={NAME=MODULENAME,DATAFILE.VALUE=../models/gmls_bjt_2N2222.py,/data/2N2222_alan.01.dat}
RQ2 8 3 50
Em_plus 2 0 VALUE={1+50e-3*sin(2*pi*10*time)}
Em_minus 3 0 VALUE={1-50e-3*sin(2*pi*10*time)}
```

* Runs GMLS on data generated from synthetic MMBT2222, NPN, Fairchild

Fast switching 1N4148 diode in bridge rectifier

```
***************
* Netlist for Bridge Rectifier
***************
V3 1 2 SIN (0 2 10)
R3 3 0 10M
B4 3 4 100K
YGENEXT pyd3 1 4
  + SPARAMS={NAME=MODULENAME,DATAFILE.VALUE=../models/gmls_diode_1N4148.py,/data/1N4148_synthetic.dat}
YGENEXT pyd1 3 1
YGENEXT pyd4 3 2
  + SPARAMS={NAME=MODULENAME,DATAFILE.VALUE=../models/gmls_diode_1N4148.py,/data/1N4148_synthetic.dat}
YGENEXT pyd2 2 4
  + SPARAMS={NAME=MODULENAME,DATAFILE.VALUE=../models/gmls_diode_1N4148.py,/data/1N4148_synthetic.dat}
.TRAN 0 0.3s
.options timeint reltol=1.0e-4
.PRINT TRAN V(1) V(2) V(3) V(4) V(2,1) V(4,3)
.END
```

* Runs GMLS on data generated from synthetic 1N4148

Xyce-PyMi: Calling Python models from Xyce

Application Note:
- “An embedded Python model interpreter for Xyce (Xyce-PyMi)”
- Provides compilation and use instructions (see the Xyce website)

Available via Spack, “a package manager for supercomputers, Linux, and macOS”
- https://spack.io

Enables Surrogate Modeling and Model Order Reduction (MOR) of devices and circuits

Publication:
Verilog-A and Xyce
A Selection of Recent Tools

ADMS
- Still the most capable open-source model compiler available

VAPP (Verilog-A Parser and Processor)
- Translates Verilog-A device models into ModSpec, a device modeling specification & compiler
- Used with the NEEDS project (https://nanohub.org/groups/needs/)

VAMPyRE (Verilog-A Model Pythonic Rule Enforcer)
- Verilog-A compact model parser and checker
- Supported by the Compact Model Coalition (CMC) (https://si2.org/standard-models/)

VerilogAE
- Verilog-A Compiler for Compact Model Parameter Extraction
What is Xyce/ADMS…
- XML templates that provide a code-generating “back-end” to ADMS

Can compile many standard models for built-in use

Verilog-A can be compiled as a shared-library plug-in
- Requires a special build of Xyce
- Many models need hand-modifications before they will compile

…there are limitations
- Requires @(initial_model) and @(initial_instance) to indicate blocks that should be executed only once
- Missing data types
- Limited support for expressions (such as ddt)
- Missing analog behaviors
- …see the Xyce/ADMS Users Guide at https://xyce.sandia.gov/

Full support of modern compact models requires modification of the ADMS source code (C)
Xyce Verilog-A Path Forward

Develop an in-house Verilog-A compiler targeted at Xyce
 ◦ A known, reliable code base, owned by Sandia
 ◦ Specialized capabilities for multi-physics, including radiation effects

Leverage work from DAGADO
 ◦ a DAG-based differentiation library, written in Python, developed at Sandia

allows for…

Ease development of compact models
 ◦ Simplify the shared library approach taken by Xyce/ADMS

Xyce compatibility with modern PDKs
 ◦ Dynamic compilation (eventually)

Will release under GPL3 as part of Xyce
 Timeline… to be announced, but work is commencing now.
Xyce Team Acknowledgements

Eric R. Keiter
Thomas V. Russo
Richard L. Schiek
Heidi K. Thornquist
Ting Mei
Jason C. Verley
Karthik V. Aadithya
Josh Schickling
Paul Kuberry (PyMi)
Gary J. Templet, Jr. (XDM)
Garrick Ng (XDM)
…and many others

Contact:
http://xyce.sandia.gov
http://github.com/Xyce
xyce@sandia.gov

Google Group Forum:
https://groups.google.com/forum/#!forum/xyce-users