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How Al impact engineering

AlphaGo (2016) ChatGPT (2022)
Message: Message:
“Al will win every well defined “Every human knowledge
optimization game” can be pre-trained”
Limitation:
“In most cases, engineering problems
cannot be mathematically defined, What Knowledge?

relying on human knowledge”



Pre-trained semiconductor knowledge

Explain the current flowing mechanism of the I-MOS

The I-MOS, or Impact-lonization Metal-Oxide-Semiconductor, is a specialized type of Metal-

Oxide-Semiconductor Field-Effect Transistor (MOSFET) designed to take advantage of the

impact ionization phenomenon for amplification and switching purposes. To understand the

current flowing mechanism of the I-MOS, it's essential to grasp the concept of impact

ionization and how it operates in this device.

1. Structure: The |-MOS has a unique structure compared to traditional MOSFETs. It typically

consists of a heavily doped drain region, a lightly doped channel region, and a gate

electrode separated by an insulating oxide layer.

2. Off-State (No Applied Voltage): In the off-state (when no voltaqe is applied to the gate), the

I-MOS =

contre

3. Impac

ionizal 5

within
electre

pairs.

Avalanche Effect: Once impact ionization begins, it triggers an avalanche effect, causing
the newly generated electrons to gain even more energy and create additional electron-
hole pairs. This results in a rapid multiplication of charge carriers in the channel.

Current Amplification: The avalanche effect leads to a significant increase in the drain
current. This is the unique feature of the [-MOS. It can amplify the input signal by a large
factor due to the impact ionization process, making it suitable for applications where high

gain or amplification is required.

. Gate Control: The gate voltage can still influence the channel's conductivity, but in the I-

I In summary, the current flowing mechanism of the I-MOS relies on the impact ionization

¢ process in the lightly doped channel region. When a high drain voltage is applied, impact

¢ ionization generates additional charge carriers, leading to an avalanche effect and a
significant increase in the drain current. The gate voltage controls the extent of this process,
allowing for amplification of the input signal. The I-MQOS is primarily used in specialized

applications where high gain or amplification is required.

Verbal knowledge on semiconductor
is already pre-trained by chatGPT

Can we train non-verbal knowledge?

Such as device physics



Compact model

{1}, {QN = f(Vg, Vd, Vs, Vb) |

Source Source

Gate —4 Gatc—l

Drain Drain

PMOS NMOS pe I_{

MS

_l____I_

M6 03

vﬂ
hg%h

L
"

i
—i—

Circuit Simulation




BSIM equations for planar MOSFET (threshold voltage model)
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Too complex to model modern devices

v It takes time to develop model and extract parameters
v Only experts can do that.
v It is extremely hard to edit industry compatible model
v People rely more on data, rather than physics. (binning model)



Neural compact modeling
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ANN o
TCAD/measured data (Artificial Neural Network) Data fitting

v"ANN, instead of equation sets, to model the behavior of the device.
v Train ANN with the data you measured or simulated.



Simple regression model
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Simple regression model (limitation)
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Neural compact modeling with limited measured data
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Not enough IV measurement, and even less 2. Using pre-trained physics

CV measurement for transient simulation v' Learn physics from larger dataset,
which shares same physics with
Interpolation/extrapolation is not enough, target device

because we need additional information to
infer empty region.



Physics embedded NN architecture
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Backward propagation

Design complex NN architecture Mixing BSIMCMG with NN

"Physics-augmented Neural Compact Model for Emerging Device Technologies”, Samsung, 2020
"Deep-Learning-Assisted Physics-Driven MOSFET Current-Voltage Modeling", UCB, EDL, 2022



Limitation of physics embedded NN architecture

v Physical aspects of the model can be blurred by statistical learning
of the NN architecture.

v It is very hard to design architecture every time, esp. input/output
dimension of the model increases.



Using Pre-trained Physics
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Can we learn this?



Meta Learning for Scientific Function (MAML)
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Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation # that can
quickly adapt to new tasks.

pre-update .- 1gradstep ==- 10 gradsteps — ground truth

v’ Learning sine function with different amplitude, frequency, phase.
v"Once we learn sine function, we can complete sine function with
a few measure points, which has not enough information.

"Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks",
UCB, ICML, 2017



Meta Learning for Scientific Function (LEO)
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Figure 1: High-level intuition for LEO. While
MAML operates directly in a high dimensional
parameter space ©, LEO performs meta-learning
within a low-dimensional latent space Z, from
which the parameters are generated.
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Figure 2: Overview of the architecture of LEO.
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Figure 3: Meta-learning with LEO of a multimodal task distribution with sines and lines, using
5-shot regression with noisy targets. Our model outputs a distribution of possible solutions, which
is also multimodal in ambiguous cases. True regression targets are plotted in black, while the 5
training examples are highlighted with red circles and vertical dashed lines. Several samples from
our model are plotted with dotted lines (best seen in color).

v'Sine, Polynomial, probabilistic distribution, better accuracy.

"Meta-Learning with Latent Embedding Optimization", Deepmind, ICLR, 2019



Meta Learning for Scientific Function (Hamiltonian)
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Figure 1: There is a resemblance between meta-learning and identifying the physical laws of Hamil-
tonian. A hypothesized governing equation of Hamiltonian, usually corrected and established by
evaluating many related systems, could be learned using meta-learning as a data-driven method
(left). Then, a well-established Hamiltonian can be utilized to predict new system dynamics, which
could be viewed as a meta-transfer process by a well-trained meta-learner (right).
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"Identifying Physical Law of Hamiltonian Systems via Meta-Learning”, SNU, ICLR, 2021




Quickly learn tech A

Tech A TCAD

Tech B

Learning device physics from previous technology
Learn to learn tasks w/ other technology data and/or TCAD data
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Learning device physics — problem setup
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Testing Device

v  Assume we have abundant data in 45nm tech node.
v With typical measure conditions, making 23nm model.

"A Novel Methodology for Neural Compact Modeling Based on Knowledge Transfer", Alsemy, SISPAD, 2022



Learning device physics — Model Architecture

Meta Learning

(a) (b)

Learn to Learn

ONERTWT || ruietoare e
Source Device 9

)
Updater Updater
= »  (MLP) (MLP)
DS
Vas » Transfer 1
Vas \ 4 Broad \ 4
>Encode _{ET Decoderl, | | IKr;o;vledge [Encode W_‘{ET Decoder|,
of Source
Vos| (MLP) (MLP) Bovice (@ r (MLP) (MLP)
Vas Vssi~
== ANN == ANN
(MLPs) .~ (MLPs)

o
o

2 )
Support Set BS‘;‘;‘;‘:":& 3:',:,: ' Support Set No Backpropagation

Parameters,

Train ANN for Several
Query Set W/L/T datasets ) Query Set

i
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Learning device physics — Model performance
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Learning device physics — Accuracy, smoothness
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Foundation model

v"We observed that the physical aspects of the devices can be pre-trained.

v But we need to increase the capacity of the model for practical use case.
(multi input for design/process parameters, CV characteristics, etc.)

v"Once we learn the physics, we want to re-use it in other application.
(nominal model generation, re-shaping, causal inferences)

v’ Transformer architecture enables it.

v Self attention on numerical relation, instead of word relation in sentence.



How it works (foundation model)
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Model generation with scarce data
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v"We showed Cgg/Cgc curve @ 10um/10um, and 10um/0.04um
v It infers every capacitance values in function domain.




Model re-targeting

Targeting
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Variation model
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Status & Plan

v We will integrate foundation model in our modeling solution, Alsis within 2024.

v’ Compared to equation model, modeling become easy and fast, 100% accuracy for
measured data point, learned physics based inference when data is scarce.

v’ Interfacing 3" party SPICE simulator through Verilog-A interface, fast and robust
simulation through patented computation algorithm.

v’ Applicable to CMOS or other physics sharing devices.

v We are working on power devices, TFT, memristors.
(It’s a little bit tricky if model has internal states)
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