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In-Memory Processing Using RRAM Crossbars
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In-Memory Processing Using RRAM Crossbars
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In-Memory Processing Using RRAM Crossbars
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Toward Biological Networks: The Three S’s

Spikes: Biological neurons interact via single-bit spikes
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Sparsity: Biological neurons spend most of their time at rest, setting most
activations to zero at any given time
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Static Suppression (aka Event-driven Processing): The sensory periphery only
processes information when there is new information to process
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Event-Driven & Sparse Tensor



Inputs The Leaky Integrate-and-Fire Neuron

Rp——— e Bilipid thin-film membrane surrounded by ions: capacitive
t * lon-leakage/transfer: resistive
* The leaky integrate-and-fire neuron is just a 1st-order low-
R R pass filter, i.e., an RC circuit
t t The neuroscientists stole from electrical engineers so it’s time
to steal back from them
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X[t]

A Recurrent Representation

Unrolled Computational Graph

» e,

The leaky integrate-and-fire neuron is now compatible with all the

tricks and hacks that go with training deep learning models.

Spiking Dynamics

N\ S[t+1]
"'\ =HWVI[t +1] = Vinr)

l Membrane Potential
/ Dynamics

V[t+1]
= BV[t] + (1 — B);n[t]

Note:

(1 — B) is removed, and
[in[t] = WX[t]



How do we train models that change over time?
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Error Backpropagation ...Through Time

Unrolled Computational Graph
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Spatial Credit Assignment
N How does a loss assign ‘blame’ to a
S[3] | - \ weight that is spatially far?

B é B é o I Temporal Credit Assignment
it / All states throughout history must be

W

stored to run the BPTT algorithm
i.e., the entire graph must be stored
ln[3] Memory complexity: O(nT)

X[3]
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Python package for gradient-based
optimization of SNNs

real-time online learning

Il snnTorch

Gradient-based Learning with Spiking Neural Networks seamless integration with Pylorch

CUDA + IPU accelerated

neuromorphic HW compatible

@ github.com/jeshraghian/snntorch




Tutorial

Tutorial 1

Tutorial 2

Tutorial 3

Tutorial 4

Tutorial 5

Tutorial 6

Tutorial 7

Title

Spike Encoding with snnlorch

The Leaky Integrate and Fire Neuron

A Feedforward Spiking Neural Network

2nd Order Spiking Neuron Models (Optional)
Training Spiking Neural Networks with snnTorch
Surrogate Gradient Descent in a Convolutional SNN

Neuromorphic Datasets with Tonic + snnlorch

Advanced Tutorials

Population Coding

Regression: Part | - Membrane Potential Learning with LIF Neurons

Colab Link
CC Open in Colab
ZC Open in Colab
CC Open in Colab
€ Open in Colab
ZC Open in Colab

CC Open in Colab

CZC Open in Colab

Colab Link

ZC Openin Colab

Z€ Open in Colab

Regression: Part Il - Regression-based Classification with Recurrent LIF Neurons CC Open in Colab

Accelerating snnTorch on IPUs

Python package for gradient-based
optimization of SNNs

real-time online learning

seamless integration with PyTorch

CUDA + IPU accelerated

neuromorphic HW compatible

github.com/jeshraghian/snntorch



RRAM-based SNN Processing
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J.K. Eshraghian et al., “Memristor-based Binarized SNNs” IEEE Nanotech. Mag. 2022



RRAM-based SNN Processing

right hand counter clockwise Decay line SNN via Integration An RRAM Approach to Spiking Neuron
\ Dynamics
— e e . .
<4 * Charge-based integration on the
Xi(6 ' bit-line capacitance
i e State decay using heterogeneous
Active )
0 \ Synapse RRAM time constants
Xa(t) ) (RRAM Cell Pre-charged sense amplifier for
spiking dynamics (replace ADC)
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J.K. Eshraghian et al., “Memristor-based Binarized SNNs” IEEE Nanotech. Mag. 2022



Classical pain points of IMC RRAM are largely addressed by spikes
Variability
ADC overhead
Bandlimited at scale

Endurance



Classical pain points of IMC RRAM are largely addressed by spikes
N oot Heterogeneity
ADCeverhread  Single-bit Spikes
Bandhmited-atseale Sparse data movement

EReErahee Weight updates only
occur at spike times



Test Set Accuracy

SkyWater 130 Neuromorphic Accelerator

Open-Source Neuromorphic IP

* Google-sponsored tape-outs using SkyWater
130nm process

* Deep learning success was in part due to
open-source; let’s port this hype train over to
silicon

e 2xsuccessful tape-outs + 1x tape-in...
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MNIST Fashion-MNIST DVS Gesture
Dataset

_ *  Online event streaming accelerator
%ﬁ e HD Event Cameras: ~10 MHz spike rate
e Diearea: 0.09 mm?

* Average Power: 11 nW

* GPIO: 50 MHz peak, Core: 210 MHz

MPWG6 BSNN Streaming
Accelerator

A\ 4

< 3mm

* 154 kB of dual-power 2 kB SRAM macros
* 9 mm?core, 21.89 mm? memory

*  SRAM: 40 MHz, Core: 20 MHz

*  Custom precision (up to 8-bits)

MPW8 SNN Accelerator
Lead Designer: Farhad Modaresi

F. Modaresi, M. Guthaus, J. K. Eshraghian, ISCAS 2023.



The next generation of neuromorphic engineers

caravel_231134c3.0as [caravel_231134c3]

31 first-time chip designers at UCSC taking the
“Brain-Inspired Machine Learning” class
defined their own design and submitted a chip.

It is currently being manufactured and will ship
back in April 2023.

www.tinytapeout.com
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http://www.tinytapeout.com/
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How many of you have converted your garage to
a semiconductor manufacturing plant?

| didn’t think so.



How can we port dynamical, time-varying neural
networks across different systems?

Solutions already exist for vanilla deep learning.

Nothing but pain exists for spiking neural networks.

... until now.

+Q+’ Caffe2 .
O PyTorch\ / ==Eanes
P O PyTorch
¥ TensorFlow -\ / y

Interoperability

<€ >

ONNX
RUNTIME

__=€) ONNX = FTensor

Keras

@Xnet / & Keras

m xnet
- m

Microsoft
CNTK =

Microsoft
CNTK

export to onnx ¢ ¢ load from onnx



Graph Execution
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Neuromorphic Intermediate Representation

A Unified Instruction Set for Interoperable

Neuromorphic
Intermediate
Representation

'R |
of g oh
dat ot ot

Brain-Inspired Computing

e Provides a common standard to enable
continuous-time, dynamical neural
networks to interface with each other

 Allows the broader community to tap
into commercial & exotic hardware with
their software of choice — e.g., Intel Loihi

>> model.to nir ()

We wrote 1000s of lines of code so you
only have to write 1.

Pederesen, Abreu, Eshraghian et al., arXiv, Nov. 2023.



Neuromorphic Intermediate Representation

A Unified Instruction Set for Interoperable
Brain-Inspired Computing

Server-scale neuromorphic HW:

Loihi, Intel Labs

Edge neuromorphic hardware:

SynSense, BrainChip

Provides a common standard to enable
continuous-time, dynamical neural
networks to interface with each other

Allows the broader community to tap
into commercial & exotic hardware with
their software of choice — e.g., Intel Loihi

>> model.to nir ()

We wrote 1000s of lines of code so you
only have to write 1.

Pedersen, Abreu, Eshraghian et al., arXiv, Nov. 2023.



SNN Evaluation — Multimodal Data

€

M. Rahimi-Azghadi, J.K. Eshraghian et al., IEEE Trans. Biomedical CAS, Dec. 2020

Accuracy
NVIDIA Jetson Nano
SNN: Loihi I 3.6
NVIDIA Jetson Nano
SNN: MorphIC 0.4
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