

Accurate Modeling of the Self-Heating and Trapping Effects in GaN HEMTs

Yiao Li, Application Engineer Keysight Technologies

Outline

- Introduction of GaN HEMTs modeling and new features in ASM-HEMT 101.4 and MVSG_CMC 3.2.0
- RF parameter extraction package in IC-CAP
 - Parameter extraction flow
 - Thermal extraction
 - Trapping extraction
- Summary

RF GaN is Hot

RF GaN market will grow from \$1.3B to \$2.7B by 2028

2022-2028 RF GAN DEVICE MARKET FORECAST

Source: RF GaN 2023 report, Yole Intelligence, 2023

www.yolegroup.com | ©Yole Intelligence 2023

Source: "RF GaN market broadens its appeal with an appetite for GaN-on-Silicon" - www.yolegroup.com

GaN Model Development History

ASM-HEMT 101.4

MVSG_CMC 3.2.0

Source: "RF GaN market broadens its appeal with an appetite for GaN-on-Silicon" - www.yolegroup.com

Modeling of Various GaN Device Effects

- <u>Field-plates</u> modeled with computationally efficient formulation
- Non-linear access region physics-based formulation covering linear and saturation
- <u>Gate-current (IG)</u> physics-based formulations covering multiple
 IG mechanisms
- <u>Trapping effects</u> multiple modes to suit applications and extraction flows
- Noise Physics-based thermal- and flicker noise models
- <u>Self-heating effect</u> modeled with thermal sub-circuits
- <u>Ambient temperature effects</u> modeled with temperaturedependent formulations

All effects modeled with consistency with each-other

•

Source: Sourabh Khandelwal, "Scalable nonlinear RF modeling of GaN HEMTs with industry standard ASM-HEMT compact model - Enabling new modeling capabilities for GaN" - IMS

ASM-HEMT 101.4 New Features

- New current saturation formulation added to the access region resistance model
- Two new model parameters tepi and asub added to tune the substrate voltage dependence of pinch-off voltage
- Technical manual updated with new section 5.2 describing statical model extraction flow

Source: Release notes of ASM-HEMT 101.4

MVSG_CMC 3.2.0 New Features

- External thermal node added additional temperature offset can be defined at the netlist level
- Schottky p-GaN implementation to include dynamic Vt effect

Source: release notes of MVSG_CMC 3.2.0

Outline

- Introduction of GaN HEMTs modeling and new features in ASM-HEMT 101.4 and MVSG_CMC 3.2.0
- RF parameter extraction package in IC-CAP
 - Parameter extraction flow
 - Thermal extraction
 - Trapping extraction
- Summary

ASM and MVSG Modeling Packages Updates in IC-CAP

Modeling Flow (ASM-HEMT)

MVSG_CMC Parameter Extraction in IC-CAP

Self-Heating Effect

- Self-heating effect has become a greater concern for industry in recent years. Since smaller devices, new materials and geometries, resulting in an increase of this effect.
- Self-heating results in an increase of the device temperature will cause mobility reduction, compromised reliability and signal delays.
- In ASM-HEMT and MVSG_CMC models, self-heating effect is modeled by standard R-C network, which contains thermal resistance RTH0 and thermal capacitance CTH0.

Source: S. Khandelwal et al., " ASM-HEMT 101.2.0 Advanced SPICE Model for HEMTs," Technical Manual [2020].

Self-heating Extraction

- We need two types of data:
 - Static IdVd at room temperature.
 - Pulsed IdVd at various other than the room temperature.
 - Vd0=0V and Vg0=0V, which are the voltage at low level.

DC, T1=25C Pulsed from (0,0), T2=100C DC curve: $T1 = T1_{ambient} + RTH0 \cdot P_{diss1}$ Pulsed curve: $T2 = T2_{ambient} + RTH0 \cdot P_{diss2}$ $RTH0 = (T1_{ambient} - T2_{ambient})/P_{diss1}$

Trapping Effect

Introduction of Trapping Effect

Charge trapping in the buffer layer and AlGaN/GaN interface layer cause a reduction in 2DEG channel charge density, causing a modulation of drain current I_D .

The trap model accurately captures Dynamic-R_{ON} and knee walkout.

Gate-lag

- Vdq = 0V
- Vgq = Deep OFF condition:
 A strong field through the
 AlGaN layer. No field through buffer (since Vds = 0). Only surface traps activated.

Drain-lag

- Vdq = A significantly positive voltage
- Vgq = Deep OFF condition:
 A strong field through the AlGaN layer as well as the buffer. Both surface and buffer traps activated.

Source: R. Fang, D. Ma, U. Radhakrishna, and L. Wei, "MVSG GaN-HEMT Model: Approach to Simulate Fringing Field Capacitances, Gate Current De-biasing, and Charge Trapping Effects," accepted by 2022 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium

Pulsed IV Measurements

- Decrease of Ion, increase of Ron and Vdsat
- After voltage stress is removed, a non-negligible time is required for the 2DEG to regain charge.
- Critical for circuit dynamic operations for RF.

Increase of Ron and cut-off voltage

Source: U. Radhakrishna, D. Piedra, Y. Zhang, T. Palacios and D. Antoniadis, "High voltage GaN HEMT compact model: Experimental verification, field plate optimization and charge trapping," 2013 IEEE International Electron Devices Meeting, Washington,

U. Radhakrishna and L. Wei, "MIT virtual source GaN HEMT: MVSG model manual," May 1 2022

ASM-HEMT Trapping Model 1 and 2

- TRAPMOD=0
 Trapping model turns off
- TRAPMOD=1
 - A single RC sub-circuit
 - Trap voltage V(trap1) will feed back into model
 - voff_cap, eta0_cap, rs_cap, rd_cap changing due to the trapping
- TRAPMOD=2
 - Two RC sub-circuits are used
 - Vtrap1 and Vtrap2 will feed back into model
 - Voff_trap, ron_trap, cdscd_trap, eta0_trap changing due to the trapping

TRAPMOD=1

TRAPMOD=2

Source: S. Khandelwal, J. Hodges, and N. Reddy, ASM-HEMT 101.3.0 Advanced SPICE Model for HEMTs Technical Manual, Macquarie University

ASM-HEMT Trapping Model 3 and 4

- TRAPMOD=3
 - Single RC sub-circuit
 - Recommended for GaN power device dynamic ON-resistance
 - Only drain-side resistance is affected
- TRAPMOD=4
 - Two RC sub-circuits are used
 - Model drain-lag and gate-lag with most flexibility
 - voffglag, u0glag, vsatglag changing due to gate-lag $(V_{G,eff})$
 - voffdlag, ns0sdlag, ns0ddlag changing due to drain-lag $(V_{D,eff})$

TRAPMOD=3

TRAPMOD=4

MVSG_CMC Charge Trapping Model

TRAPSELECT=0
 Trapping model turns off

TRAPSELECT=1

A single RC network with a constant time τ is used for modeling trapping and de-trapping constant time.

TRAPSELECT=2 (new)

Two parallel R-branches in an RC network with an ideal series diode on one of the resistance branches.

Two-time constants are used.

Recommended due to more flexibility

Trapping model 1

Source: R. Fang, D. Ma, U. Radhakrishna, and L. Wei, "MVSG GaN-HEMT Model: Approach to Simulate Fringing Field Capacitances, Gate Current De-biasing, and Charge Trapping Effects," accepted by 2022 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium

 $au_{capture}^{\perp} \approx R_{capture}C$ in forward-biased $au_{emission} \approx R_{emission}C$ in reverse-biased

Trapping Extraction (ASM-HEMT)

Gate Lag Trapping Extraction

Trapping Extraction (ASM-HEMT)

Drain Lag Trapping Extraction

Summary

- The latest version of ASM-HEMT 101.4 and MVSG_CMC 3.2.0 is implemented in ADS 2024 update 1
- The RF package with ASM-HEMT 101.3 and MVSG_CMC 3.1.0 is implemented in IC-CAP 2023 and newer version
- Both ASM-HEMT and MVSG_CMC have good performance on GaN HEMTs modeling:
 - Core model for DC
 - CV and S-parameters
 - Thermal extraction implemented in both ASM-HEMT and MVSG_CMC parameter flow
 - Trapping extraction implemented in MVSG_CMC parameter flow will implement in ASM-HEMT parameter flow soon

Thanks

- Thanks to Prof. Sourabh Khandelwal, developer of ASM-HEMT, for his help in the development of ASM-HEMT parameter flow in IC-CAP
- Thanks to Prof. Lan Wei, developer of MVSG_CMC, for her help in the development of MVSG_CMC parameter flow in IC-CAP

Thank you

Gate Lag Trapping Extraction

time [E-6]

__DUTs_below_are_dynamica

FINISH MDLG

Drain Lag Trapping Extraction

time [E-6]

