Bringing Device Models Into Production

Jushan Xie
John Pierce

Cadence Design Systems, Inc.
Agenda

1. Introduction
2. Spice model from University to simulator
3. Model verification and benchmark
4. Model integration to EDA tools
5. Summary
• Continue device shrinking (Moore’s law)
 – Planar MOSFET
 – Different channel materials
 – Multi-gate device (FinFET, tri-gate)

• More physical effects for small device geometry
 – Substrate leak (HCI)
 – Gate leak
 – GIDL
 – High K material, etc.

• Improve modeling
 – Vth based model
 – Surface potential based model
New Devices Enabling… (Application driven)

- Efficient representation of new devices for
 - RF/wireless application
 - High voltage, high speed, low power, mems
Verification, SPICE Verification Costs Increasing

- Verification costs are… exploding
 - 85% CAGR* first time development
- Semiconductor high market growth – low power
 - Computing (tablet), wireless (mobile), wired (data centers), industrial mil/aero, automotive
- Time to market
 - Increasing design gap
 - Percentage of re-spins projected to almost 50% at 14nm*

* Source: Semico

Semico: Design Cycle Time Increasingly Out of Sync with Market Needs

Time required for design verification exploding – need more time
Design and verification solutions stressed

• Variation increasing
 – 5% per sigma 28nm, 6% per sigma 20nm
 – Critical to determine impact on design

• Exponential growth in design size and complexity
 – Low power architecture, power domains - stretch analysis capacity
 – Continued increased in gate count, functionality

• Resources required for the same coverage increasing over 30%

Increased complexity, variation explodes simulation time

Source: Cadence characterization team
SPICE Transient Simulation Activities

• Parse, elaborate and setup the simulation
• Transient Analysis
 For each time-step
 For each iteration {
 – Evaluate each device's I, Q, G & C and Load into the Matrix & RHS
 – Solve the Matrix
 } repeat until the solution converges
 Select the next time-step, to satisfy error constraints
 } repeat until the analysis is complete
• Similar inner loop for most analyses
• Other activities, output, assert, current probing
SPICE Transient Simulation Activities

• Device **evaluation**
 – Majority (70+%) of CPU for small to medium sized designs
 – Device evaluations are independent of each other, opportunities for parallelization

• Matrix **solve**
 – Dominates total CPU for large and/or post-layout designs

• Reduce total number of iterations and removing convergence difficulties is critical
Spice model at university (or model developer)

• Develop model equation for core model

 – Vth based model: Formulate model equation
 – Single IV and CV equations for all regions

 – Surface based model:
 – simplify and solve Poisson equation
 – Develop IV/CV model

 – MOSFET symmetric handling

• Consider various device technologies

 – Support high-K dielectric gate
 – Different channel materials
 – Pocket implement
 – ...
Spice model at university (or model developer)

• Develop model for various physical effects
 – Internal source/drain/gate/bulk resistance
 – DIBL
 – NQS
 – Self-heating
 – Layout dependent effect
 –

• Develop model for parasitic model
 – Overlap cap
 – Junction
Spice model evaluation (potential user, like CMC member)

- Primarily focus on device behavior
 - Fit TCAD data
 - Fit measured IV/CV data
 - Check device model geometric scaling
 - Check device model temperature dependency
 - Layout effect, self-heating, NQS, etc.

- Spice parameter extraction
 - Is it easy to extract Spice model parameter
Spice model evaluation (potential user, like CMC member)

- Simulator convergence criteria
 - RHS continuous
 - First order derivative continuous
 - Second order derivative

- Most device model
 - RHS continuous
 - No guarantee on first order derivative continuous

- Monotonic
 - IV must be monotonic to avoid multiple solutions
Example of non-monotonic IV

Id vs Vg DC sweep

Id vs Vd DC sweep
Examples of model issue

Discontinuity

Discontinuity
Examples of model issue

<table>
<thead>
<tr>
<th>Name</th>
<th>V refs</th>
<th>V bdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>vbp</td>
<td></td>
<td>-0.0</td>
</tr>
<tr>
<td>vcp</td>
<td></td>
<td>-0.8</td>
</tr>
<tr>
<td>vbp</td>
<td></td>
<td>-0.7</td>
</tr>
<tr>
<td>vcp</td>
<td></td>
<td>-0.9</td>
</tr>
<tr>
<td>vbp</td>
<td></td>
<td>-0.8</td>
</tr>
<tr>
<td>vcp</td>
<td></td>
<td>-0.7</td>
</tr>
</tbody>
</table>

Diagram:

- **Vb = -0.8, Vc: -10 ~ 0**
- **Vb = -0.8, Vc: 0 ~ -10**
Model enhancement for simulator

- Support various conventional outputs
- Add mfactor, trise
- Support simulation functionality, alter/altergroup, Monte Carlo, etc.
- Support dcmatch analysis
- Etc.
Integrate model to various simulation tools

- Tune model performance and memory usage
- Integrate model into various products
- Consider model parallelization
- Consider model for fast Spice usage
- Etc.
Spice model implementation for simulator

- **Model evaluation**
 - Verilog-A or Spice3 code evaluation
 - Device behavior check as model developer (IV/CV/Temperature/… sweep)
 - Simulation speed comparing to similar device model
 - MOSFET comparing to MOSFET, BJT to BJT, etc.
 - Check memory usage

- **Apple to apple comparison**
 - Extract Spice parameter from the same device IV/CV data
 - Turn on the same physical effects
 - The same feature, like NSQ, self-heating, internal node, etc.
Comparison model A and model B

<table>
<thead>
<tr>
<th>Test case</th>
<th># of mosfets</th>
<th>Tran Time (sec)</th>
<th>Iteration #</th>
<th>Time / (#Iter * #Device)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>#1</td>
<td>74</td>
<td>4.62</td>
<td>4.82</td>
<td>10576</td>
</tr>
<tr>
<td>#2</td>
<td>288</td>
<td>2.85</td>
<td>4.30</td>
<td>1710</td>
</tr>
<tr>
<td>#3</td>
<td>942</td>
<td>106</td>
<td>166</td>
<td>18362</td>
</tr>
<tr>
<td>#4</td>
<td>958</td>
<td>6.85</td>
<td>7.87</td>
<td>1145</td>
</tr>
<tr>
<td>#5</td>
<td>1008</td>
<td>251</td>
<td>386</td>
<td>40791</td>
</tr>
<tr>
<td>#6</td>
<td>1188</td>
<td>68.5</td>
<td>79.7</td>
<td>9347</td>
</tr>
<tr>
<td>#7</td>
<td>1984</td>
<td>660</td>
<td>1154</td>
<td>58014</td>
</tr>
<tr>
<td>#8</td>
<td>7454</td>
<td>264</td>
<td>296</td>
<td>4548</td>
</tr>
<tr>
<td>#9</td>
<td>13880</td>
<td>897</td>
<td>958</td>
<td>7977</td>
</tr>
</tbody>
</table>
Comparison model A and model B (normalized with model A)

<table>
<thead>
<tr>
<th>Test case</th>
<th># of mosfets</th>
<th>Tran Time (sec) A</th>
<th>Tran Time (sec) B</th>
<th>Iteration # A</th>
<th>Iteration # B</th>
<th>Time / (#Iter * #Device) A</th>
<th>Time / (#Iter * #Device) B</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>74</td>
<td>1.00</td>
<td>1.04</td>
<td>1.00</td>
<td>0.77</td>
<td>1.00</td>
<td>1.35</td>
</tr>
<tr>
<td>#2</td>
<td>288</td>
<td>1.00</td>
<td>1.51</td>
<td>1.00</td>
<td>1.02</td>
<td>1.00</td>
<td>1.49</td>
</tr>
<tr>
<td>#3</td>
<td>942</td>
<td>1.00</td>
<td>1.57</td>
<td>1.00</td>
<td>0.82</td>
<td>1.00</td>
<td>1.91</td>
</tr>
<tr>
<td>#4</td>
<td>958</td>
<td>1.00</td>
<td>1.15</td>
<td>1.00</td>
<td>0.88</td>
<td>1.00</td>
<td>1.31</td>
</tr>
<tr>
<td>#5</td>
<td>1008</td>
<td>1.00</td>
<td>1.54</td>
<td>1.00</td>
<td>1.11</td>
<td>1.00</td>
<td>1.39</td>
</tr>
<tr>
<td>#6</td>
<td>1188</td>
<td>1.00</td>
<td>1.16</td>
<td>1.00</td>
<td>0.80</td>
<td>1.00</td>
<td>1.46</td>
</tr>
<tr>
<td>#7</td>
<td>1984</td>
<td>1.00</td>
<td>1.75</td>
<td>1.00</td>
<td>1.02</td>
<td>1.00</td>
<td>1.72</td>
</tr>
<tr>
<td>#8</td>
<td>7454</td>
<td>1.00</td>
<td>1.12</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.33</td>
</tr>
<tr>
<td>#9</td>
<td>13880</td>
<td>1.00</td>
<td>1.07</td>
<td>1.00</td>
<td>0.86</td>
<td>1.00</td>
<td>1.25</td>
</tr>
<tr>
<td>AVG</td>
<td>13880</td>
<td>1.00</td>
<td>1.32</td>
<td>1.00</td>
<td>0.90</td>
<td>1.00</td>
<td>1.47</td>
</tr>
</tbody>
</table>
Spectre Comparison of Peak Memory

<table>
<thead>
<tr>
<th>Test case</th>
<th># of mosfets</th>
<th>Initial evaluation(Mbytes)</th>
<th>Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>#1</td>
<td>74</td>
<td>39</td>
<td>39.4</td>
</tr>
<tr>
<td>#2</td>
<td>288</td>
<td>49.9</td>
<td>41.3</td>
</tr>
<tr>
<td>#3</td>
<td>942</td>
<td>45.8</td>
<td>47.1</td>
</tr>
<tr>
<td>#4</td>
<td>958</td>
<td>48.9</td>
<td>50.2</td>
</tr>
<tr>
<td>#5</td>
<td>1008</td>
<td>46</td>
<td>47.3</td>
</tr>
<tr>
<td>#6</td>
<td>1188</td>
<td>47.3</td>
<td>48.8</td>
</tr>
<tr>
<td>#7</td>
<td>1984</td>
<td>46.9</td>
<td>55.5</td>
</tr>
<tr>
<td>#8</td>
<td>7454</td>
<td>102</td>
<td>112</td>
</tr>
<tr>
<td>#9</td>
<td>13880</td>
<td>134</td>
<td>155</td>
</tr>
<tr>
<td>AVG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model QA

• Implement device model into simulator, like Spectre
 – Compare simulator device model behavior with original model in Verilog-A or Spice3
 – Complete CMC QA suite
 – Complete company model QA suite (more comprehensive) by R&D
 – Send model to product verification team for fully qualification

• Beta or EAP release
 – Beta test for foundry, potential

• Official release
Minimizing Production Impact

- Accuracy, performance and capacity
 - Converge, converge, converge

- Qualify early and for each functional, device and cost
 - Prototype models
 - Foundry model qualification – where programs exist
 - Device level
 - Circuit level
 - Partner with companies/teams developing designs

Qualification complete with the real designs
Compromise between Accuracy and Performance

- **errpreset** is a Spectre invention that relieves user from manual tweaking
 - Liberal mode provides satisfies most analog circuit simulation needs
 - Moderate most widely used mode
 - The conservative mode provides the ultimate golden accuracy

<table>
<thead>
<tr>
<th>errpreset</th>
<th>reltol</th>
<th>relref</th>
<th>method</th>
<th>maxstep</th>
<th>Iteratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal</td>
<td>X10</td>
<td>sigglobal</td>
<td>trapgear2</td>
<td>/10</td>
<td>3.5</td>
</tr>
<tr>
<td>Moderate</td>
<td>(1e-3)</td>
<td>sigglobal</td>
<td>traponly</td>
<td>/50</td>
<td>3.5</td>
</tr>
<tr>
<td>Conservative</td>
<td>X0.1</td>
<td>allocal</td>
<td>gear2only</td>
<td>/100</td>
<td>10</td>
</tr>
</tbody>
</table>
Integration into various tools

Spectre® Simulation Solution

- Model is the foundation of circuit simulation
- Circuit simulation is the foundation for…
- Integration of SPICE into all other applications comes next
 - EM/IR, Litho electrical analysis, static timing, SoC power analysis, board and signal integrity, standard cell and memory characterization, mixed signal and finally electrically aware design
Making a successful Spice model

- It is not enough even simulator does everything for a device model

- What is needed else
 - Spice model has to be attractive (designer wants to use it)
 - Foundry needs to provide Spice model library
 - Spice model has to qualified for real circuit
 - Convergence (usually more non-convergence shows up)
 - Speed
 - Memory usage
Bring a model to industry

• Procedure
 – University / model developer
 – EDA simulator implementation
 – Foundry provide model library
 – Design likes to use it

• A successful Spice model
 – Must converge
 – Good performance
 – Reasonable memory usage
 – Simulator/Foundry/Designer