TCAD in the more Moore and more than Moore era

Mathieu Luisier, Reto Rhyner, and Aron Szabo
Integrated Systems Laboratory, ETH Zürich
Overview

• Nanoelectronic Device Simulations
 From Moore’s Law to TCAD
• Simulation Approach and Validation
 Model choice and validation
• Application to Nanoscale Devices
 Self-heating in NWFETs
 Metal-dichalcogenide FETs
• Outlook and Conclusion
Overview

• Nanoelectronic Device Simulations
 From Moore’s Law to TCAD
 • Simulation Approach and Validation
 • Model choice and validation
 • Application to Nanoscale Devices
 • Self-heating in NWFETs
 • Metal-dichalcogenide FETs
 • Outlook and Conclusion
Motivation: Future of Moore’s Scaling Law

The transistor evolution is governed by Moore’s Scaling Law

- 65nm (2005)
- 45nm (2007)
- 32nm (2009)
- 22nm (2011)
- XXnm (2020)

Every 18-24 months, 30% dimension scaling. ⇒ area is divided by 2.

Breakthrough: 2D->3D
New Structures

Nanowire
P. Hashemi et al., *EDL* 30, 401 (2009)

3-Gate SOI
Next Generation Devices

Graphene

CNT
Supratik Guha, IBM Research

III-V UTB
Y.Q. Wu et al., *EDL* 30, 700 (2009)

MoS$_2$

Ge UTB
R. Zhang et al., *TED* 59, 335 (2012)

New Materials
Next Generation Devices

New Concepts

NEMS

SET

BTB Tunneling
W.Y. Choi et al., EDL 28, 743 (2007)

Advanced Design Tool(s) Required
TCAD Tool Requirements

Three different perspectives: EE+PHYS+HPC

Device Engineering

- **Industrial-Strength** Nano-electronic Device Simulator
- **Multi-Geometry** Capabilities
- Explore, Understand, Predict, Optimize Novel Designs

Physical Models

- 3D **Quantum** Transport Solver
- Accurate Representation of the Semiconductor Properties
- Atomistic Description of Devices
- **Multi-Physics** Modeling

OMEN

- Accelerate Simulation Time
- Investigate New Phenomena at the Nanometer Scale
- Move Hero Experiments to a Day-to-Day Basis

Efficient Parallel Computing

- \(I_d - V_{gs} \)
- \(p\text{-FET} \) vs. \(n\text{-FET} \)
- Electron Density
- Parallelization Scheme
Overview

- Nanoelectronic Device Simulations
 From Moore’s Law to TCAD

- **Simulation Approach and Validation**
 Model choice and validation

- Application to Nanoscale Devices
 Self-heating in NWFETs
 Metal-dichalcogenide FETs

- Outlook and Conclusion
Requirements for the simulation approach

Conventional approach: **drift-diffusion** (DD) simulator

\[
\begin{align*}
\vec{J}_n &= q \cdot n \cdot \mu_n \cdot \vec{E} + q \cdot D_n \cdot \nabla n \\
\vec{J}_p &= q \cdot p \cdot \mu_p \cdot \vec{E} - q \cdot D_p \cdot \nabla p
\end{align*}
\]

DD does not capture **bandstructure** and **confinement** effects

What is needed: solution of **Schrödinger** equation (NEGF)

\[
(E - H(k) - \Sigma^R(E,k)) \cdot G^R(E,k) = I
\]

\[
G^<(E,k) = G^R(E,k) \cdot \Sigma^<(E,k) \cdot G^A(E,k)
\]

Key Component of NEGF equations

\[H(r,k)\]: Hamiltonian matrix in selected basis (EMA, TB, DFT)
Empirical Nearest-Neighbor **Tight-Binding** Method

GOOD:
- bulk CB and VB fitted
- extension to nanostructures
- atomistic description

BAD:
- high computational effort
- empirical parametrization

Si Electron Bandstructure

![Si Electron Bandstructure Diagram](image)
Model Validation: III-V HEMT Simulations

Expt: J. del Alamo @ MIT

Thermionic Current over a Potential Barrier

\[\text{Simulation domain} \]

\[\text{Simulation} \]

\[\text{Simulation} \]

\[\text{Simulation} \]

\[\text{Experiment} \]

\[\text{Experiment} \]

\[\text{Experiment} \]
Model Validation: CNT FET Simulations

Expt: A. Franklin @ IBM YH

Simulation domain

L_g = 9nm

Ambipolar Current Flow

CB

E_f l

E_f r

Source

Drain

V_{ds} = -0.40 V

V_{ds} = -0.01 V

I_d - V_{gs} Characteristics

Experiment

Simulation

x (nm)

E (eV)

Source

Drain

HfO_2

Gate

Air

Simulation domain

 Drain

Source

CB

E_f l

E_f r

Ambipolar Current Flow

V_B
Model Validation: Hetero-BTBT Diode Simulations

Expt: S. Rommel @ RIT SEMATECH
Overview

• Nanoelectronic Device Simulations
 From Moore’s Law to TCAD
• Simulation Approach and Validation
 Model choice and validation

• Application to Nanoscale Devices
 Self-heating in NWFETs
 Metal-dichalcogenide FETs
• Outlook and Conclusion
Objective:
• Explore the scaling behavior of gate-all-around nanowire transistors for sub-10 nm gate length applications, especially *electro-thermal* effects.

Approach:
• Tight-binding \(sp^3d^5s^*\) description of the electron/hole properties
• Quantum transport with *NEGF*
• Ballistic simulations and inclusion of electron-phonon scattering with out-of-equilibrium phonons.

Results and impact:
• Influence of electron-phonon scattering on the nano-device performance: current decrease, and temperature increase.
Goal: atomistic simulation of Si gate-all-around NWFET

\[x = \langle 100 \rangle \]

e-bandstructure

\[m^* = 0.29m_0 \]

ph-bandstructure

Transfer characteristics \(I_d - V_{gs} \)
Goal: atomistic simulation of Si gate-all-around NWFET

$x=<100>$

Transfer characteristics I_d-V_{gs}

- Uncoupled Scatt.
- Coupled Scatt.
Objective:

- Explore the potential of metal-dichalcogenides as logic switches.

Question: Can they beat Si?

Approach:

- *Ab-initio* modeling of the band-structure properties with VASP
- Projection into Wannier basis
- Quantum transport with NEGF
- Simulations beyond the ballistic limit

Results and impact:

- Full-band and scattering important
- Mobility increases with # layers, but electrostatics degrades
- Lower performance than s-Si and III-V semiconductors as FET

B. Radisavljevic et al. Nat. Nano. 6, 147 (2011)
Ballistic device Simulation

Device specifications:
- Gate length $L_G = 10.7$ nm
- S/D extension $L_S = L_D = 15$ nm
- Supply voltage $V_{DD} = 0.68$ V
- EOT = 0.58 nm
- Doping $N_D = 6 \times 10^{13}$ cm$^{-2}$

NDR observed:
- Where does it come from?
- Is it physical?
- If no, how can we get rid of it
Device simulation with scattering

With electron-phonon scattering:

- $\frac{I_{\text{diss}}}{I_{\text{ball}}}$ current ratio decreases with V_{gs} for $V_{ds} = 0.05$ V due to backscattering
- Ratio increases at $V_{ds} = 0.68$ V because scattering connects narrow bands
Performance comparison with s-Si and InGaAs

- Single-layer MoS$_2$
- s-Si/InGaAs

MoS$_2$:
- Good electrostatics control
- Higher m* \(\Rightarrow\) lower v$_{\text{inj}}$
 \(\Rightarrow\) lower ON current
Overview

• Nanoelectronic Device Simulations
 From Moore’s Law to TCAD
• Simulation Approach and Validation
 Model choice and validation
• Application to Nanoscale Devices
 Self-heating in NWFETs
 Metal-dichalcogenide FETs

• Outlook and Conclusion
Conclusion

• **Future of Moore’s Law**
 TCAD to accelerate nano-device innovation

• **Proposed Simulation Approach**
 Good agreement with experimental data
 Dedicated to large variety of nanoscale devices
 Necessity to go beyond m^* and ballistic in MoS$_2$

• **Future Work and Challenges**
 More *ab-initio* device simulations
 Work more closely with experimental groups